A MONTE CARLO STUDY OF THE ACCURACY AND
ROBUSTNESS OF TEN BIVARIATE LOCATION ESTIMATORS

JEAN-CLAUDE MASSE! AND JEAN-FRANCOIS PLANTE

ABSTRACT. In a Monte Carlo study, ten bivariate location estimators are com-
pared as regards their accuracy and robustness. In addition to the arithmetic
mean, five bivariate medians and four depth-based trimmed means are thus in-
vestigated. The behavior of the estimators is examined under various sampling
situations determined by three sample sizes and twenty-six underlying distri-
butions, fourteen of which are centrally symmetric and twelve are asymmetric
contaminated normals. Performance is assessed through numerical functions
of the sample mean squared error and bias matrices.

RUNNING TITLE: Accuracy and Robustness of Location Estimators

1. INTRODUCTION

Robust alternatives to the arithmetic mean for estimating location have a history
going back at least to Laplace [see Stigler (1986, p. 54)]. Fisher (1922) drew atten-
tion to the inefficiency of the arithmetic mean as an estimator of location for some
distributions belonging to the family of Pearson curves near the normal. Using his
normal contamination models, Tukey (1960) dramatically demonstrated how little
efficient the mean can become when contamination increases. The same paper also
shows how alternative location estimators such as the median or trimmed means
can achieve higher asymptotic efficiency than the mean. As a result, statisticians
have become more wary of making uncritical use of normal theory and have felt
aware of the need for robust procedures, in the sense of procedures that remain
good when the assumed model does not quite fit.

A theory of robust estimation was first developed by Huber (1964) in a paper
that also introduced the so-called M-estimators of location, a class of estimators
that includes the arithmetic mean, the median and maximum likelihood estimators.

Huber defined a robust estimator of location as one that minimizes the asymptotic
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variance over some neighborhood of a known distribution (such as the normal).
In the wake of Huber’s work, several statisticians assessed the robustness and effi-
ciency of various classes of location estimators for a variety of parent distributions;
these classes include estimators defined by linear combination of order statistics
(L-estimators) and estimators defined by rank tests (R-estimators). This effort
culminated in a major Monte Carlo robustness study conducted at Princeton by
Andrews et al. (1972), in which the performances of 68 univariate estimators of
location were compared on samples from a dozen distributions. For good histor-
ical accounts of the development of these ideas, see Huber (1972) and Hampel et
al. (1986).

Bickel (1964) was one of the first to study efficiency and robustness for mul-
tivariate location estimators. In his paper, the vector of coordinate medians and
the vector of coordinate medians of averages of pairs (vector of coordinate Hodges-
Lehmann estimators) are compared with the mean with respect to asymptotic effi-
ciency under various distributions, some close to the normal, some not; in addition,
Bickel investigates the robustness of the vector of coordinate Hodges-Lehmann es-
timators when the underlying distribution is contaminated.

Beginning in the seventies, a few authors obtained several multivariate versions
of typically univariate notions such as medians, L-estimators, R-estimators. Four
of the multivariate medians are now known as the spatial median (also called me-
diancenter or Li-median), the Tukey or halfspace median, the Oja median and the
Liu or simplicial median; these estimators were respectively proposed or discussed
by Gini and Galvani (1929) [see also Haldane (1948)], Tukey (1975), Oja (1983)
and Liu (1990). Some work has been done on the efficiency of the spatial median
and the Oja median with respect to the arithmetical mean; a good reference for
some of the results is Hettmansperger and McKean (1998).

Through his notion of depth, Tukey (1975) initiated a very fruitful approach for
defining multivariate location estimators. A depth can be seen as a device for mea-
suring the centrality of a multivariate data point within a given data cloud. Each
such function induces a center-outward ranking of data points within a given mul-
tivariate data set, thus allowing a multivariate generalization of univariate location
estimators such as the median, trimmed means or, more generally, L-estimators of

location. In particular, Tukey’s depth is the basis for the so-called halfspace median
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and a notion of trimmed mean used in this paper. Various depth functions have
since appeared in the statistical literature [see Zuo and Serfling (2000a)], each one
giving rise to a ranking of the data and therefore to a family of L-estimators of
location. Besides Tukey’s depth, the best known depth function is the simplicial
depth of Liu (1990), which is used in this paper through the Liu median and Liu
depth-based trimmed means.

In order that a depth be a useful applicable tool, ease of computation is a pre-
requisite. An algorithm was proposed by Niinimaa et al. (1992) to compute the
Oja bivariate median. Until recently, no algorithms were available to compute the
halfspace and simplicial depths, thus severely limiting the applicability of these
functions. An important advance came with Rousseeuw and Ruts (1996) who con-
structed exact algorithms for computing the halfspace and simplicial depths of a
point in a two-dimensional cloud. Rousseeuw and Ruts (1998) did the same for
the computation of the bivariate Tukey median. Exact or approximate algorithms
have also been obtained for higher dimensions: see Rousseeuw and Ruts (1998) and
Struyf and Rousseeuw (2000).

Taking advantage of the algorithms recently proposed to compute depths, this
Monte Carlo study aims at making a finite-sample comparison of the accuracy
and robustness of ten bivariate estimators of location, six of which being based on
Tukey’s or Liu’s depths. For each estimator, sample size and underlying distribu-
tion, performance is assessed through numerical functions of the estimated mean
squared error and bias.

Little is known about the efficiency of the Tukey or Liu depths-based location
estimators studied in this paper. Through a small simulation, Rousseeuw and Ruts
(1998) have studied empirically the efficiency of the Tukey median and vector of
medians for various sample sizes and the standard bivariate normal as the under-
lying distribution. Fraiman and Meloche (1999) have performed a similar study
of six location estimators (including the vector of medians, as well as the spatial
and Liu medians) for sample size 20 under various distributions, mostly different
from ours. At the present time, the Monte Carlo method appears to be the only
practical means of studying the efficiency of most depth-based location estimators.
Indeed, for six of the depth-based location estimators chosen for this study, exact

efficiency calculations remain intractable even for a normal distribution.
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The paper is arranged as follows. Section 2 describes the location estimators
studied in the simulation. Section 3 deals with the bivariate distributions which
along with the sample size determine the sampling situations applied to the es-
timators. Section 4 covers some technical aspects of the Monte Carlo study and
describes the numerical measures used to assess the estimators. Section 5 reports
on the performances of the estimators and interprets the results. Section 6 is a

conclusion.

2. BIVARIATE LOCATION ESTIMATORS SELECTED FOR THE STUDY

Let F be a probability distribution in R? and X, X»,..., X, a random sample
from F. A bivariate location estimator can be informally described as a R2-valued
function T,,, defined for each sample size n, mapping the set of data points into
some point T, (X7y,...,X,), which we understand as some approximation of the
location or center of F.

In this Monte Carlo study, it will always be assumed that 0 is the true location to
be estimated. This is the natural center for fourteen simulated distributions which
are centrally symmetric about 0, but it is not so for twelve simulated distributions
which are asymmetric contaminated distributions. Here we adopt the point of
view that contamination is an uncontrollable disturbance in the estimation process
that makes it more difficult to estimate correctly the true center 0, a target which
one hopes ideally to estimate in the absence of contamination. This part of the
study thus intends to examine the effect of some forms of contamination on the
various estimators, as measured by bias and variability with respect to 0. Note that
in case of asymmetry one may argue that several location parameters or natural
centers are possible, all equally valid [see for example Lehmann (1983, p. 365)]; in
such situation, one can in fact say that each location estimator has its own target
(population mean, population trimmed mean, population Tukey median, etc.). In
this study, it will be seen that asymmetric contamination has the expected effect
of introducing a stronger bias component for each location estimator.

All estimators retained for the study satisfy some equivariance property. A
location estimator Ty, is said to be translation equivariantif T,,(X1+a, ... , X, 4a) =
Tn(X1,...,X,) +a for every a € R Such an estimator is said to be orthogonally
equivariant if T,(AX; +0b,... ,AX,, +b) = AT, (X1,...,X,) + b holds for every
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linear orthogonal transformation A : R? +— R? and every b € R2. If the latter
equality holds for every nonsingular linear transformation, 7), is said to be affine
equivariant.

Next we describe the ten bivariate location estimators that were investigated in

the study.
2.1. Affine equivariant estimators.
2.1.1. The mean. This is the standard arithmetic mean ), X;/n.

2.1.2. The Tukey median. Let U := {u € R? : |u| = 1}. For any z € R? and u € U,
define the closed halfspace H[z,u] := {y € R? : v’y > u'z}. The Tukey depth (or
halfspace depth) of a point € R? (with respect to F') is defined as

HD(z) := inf FH[z,u].
uelU

The empirical Tukey depth HD,, is defined to be the Tukey depth with respect
to the empirical distribution function F,; it follows that HD,(x) is the minimal
proportion of data points within a closed half-space containing z. Clearly the
empirical Tukey depth attains a maximum value over R?; any maximizer is then
called a Tukey median. Such maximizer is however not necessarily unique. Indeed,
since HD,, is a quasi-concave function [Rousseeuw and Ruts (1999), Prop. 1], the

set

K,:={y: HD,(y) = mngDn(x)}
is a non-empty closed convex polygon with a finite number of sides and vertices.
In the following, to determine a maximizer uniquely, we agree to define it as the

centroid of K, [see Donoho and Gasko (1992), p. 1809]. This maximizer T,, is then

said to be the Tukey median of the sample.

2.1.3. The Liu median. The Liu depth (or simplicial depth) of a point z € R? is
defined to be the probability that x belongs to the simplex whose vertices are 3

independent observations from F'. This can be written as

SD(x) := /1(37 € S(y1,y2,y3))AF> (y1,y2,y3),

where S(y1, y2, y3) is the closed 2-dimensional simplex (triangle) with vertices y1, ya,

Y3-
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The sample version of SD is obtained by replacing F' by F), in the above, that

is by computing the proportion of sample random triangles containing x:

n

3) 1 € S0t Xin X))

5Du(o) = (

where the sum ranges over all triplets i1,12,%3 such that 1 < i3 < i3 < i3 < n.
As in Liu (1990), define a location estimator T,, as the data point where SD,, is
maximized or the average of such points if there are many. We call T,, the Liu

median of the sample.

2.1.4. The Oja median. Let A(x1,22,23) denote the area of the triangle S(z1,

x9,x3). Oja (1983) defined an Oja median as a point minimizing in « the function

(Z) B > A(Xi,, Xiy 1),

where the sum ranges over all pairs (i1,42) such that 1 < i; < is < n. According
to Oja and Niinimaa (1985), such a minimum is unique if n is even. In general,
since the set of minimizers is a convex polygon [Leén and Massé (1993)], we agree

to define the Oja median T}, as the centroid of this polygon.

2.1.5. Depth-based trimmed means. Depth functions provide a convenient way to
rank data points according to their depth, and so enable us to define multivariate
L-estimators of location. Here, to define trimmed means, we shall assume as in Liu
et al. (1999) that the data points are ordered according to decreasing depth values.
To define precisely r;, the depth rank of X;, we need to remove the ambiguity
caused by the presence of ties: if D,(X;) = D,(X;) and ¢ < j, we agree that
r; < rj. Write then X{yj,... , X[, for the corresponding (depth) order statistics.
Let Ave denote the average computed over the set of X;’s left after trimming
according to some specification. In this paper, four trimmed means have been

considered. For o = .05, .10, these are:
T(F,) = Ave(Xp; i < n— [na)),

where both the empirical Tukey and Liu depths are used to determine the ordering.

2.2. Two translation equivariant estimators that are not affine equivari-

ant.
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2.2.1. The wvector of coordinate medians. Writing X; = (X1, X;2), the vector of
coordinate medians is defined as T;, := (Med(X11, ..., Xn1), Med(X12,... , Xn2)),
where Med denotes the one-dimensional median. This location estimator is easily

seen to be translation equivariant but not affine equivariant.

2.2.2. The spatial median. The spatial median is defined as

- X;
T, := argmin M,
x

where || is the euclidean norm. Except for degenerate cases, the foregoing minimum
is known to be unique. Even though it is not affine equivariant, the spatial median is
clearly translation equivariant and orthogonally equivariant. In our study, the spa-
tial median will prove to be the best overall of all ten location estimators. For some
background and properties, refer to Small (1990); more recent results and references
can also be found in Chaudhuri (1996) or Chakraborty and Chaudhuri (1999).

In our description and interpretation of the results (Section 5), the following

descriptive abbreviations are used to identify the estimators:

e cmed (spatial median);

e tmed (Tukey median);

e omed (Oja median);

e [med (Liu median);

e vmed (vector of coordinate medians);

e mean (arithmetic mean);

e hd, (trimmed mean with respect to the Tukey depth, a = .05,.10);

e sd, (trimmed mean with respect to the Liu depth, a = .05,.10).

3. BIVARIATE DISTRIBUTIONS SIMULATED

Twenty-six distributions were investigated. Among these, fourteen are centrally
symmetric about 0, where central symmetry about 0 means that X and —X have
the same distribution. The twelve remaining simulated distributions are asymmet-
ric contaminated normal distributions. One of the distributions has finite support
and the others have been chosen such that heavy-tailedness ranges from low to

high.
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3.1. Non mixtures centrally symmetric distributions. These are:

1. D1 = N5(0,1), the standard bivariate normal distribution with density

1
fz,y) = - exp(= (2" +47)/2));
s
2. Dy = DE,(0,T), the double exponential or Laplace bivariate distribution with

independent components, whose density is

1
f@.y) = g exp{=(lal +1y)}
3. D3 = UD, the uniform distribution on the disk {(z,y): 0 < 22 +y? < 4};

4. D4 = t3, the t bivariate distribution with 3 degrees of freedom whose density

1 2 + 92 —5/2
Floy) = = (1+ ;

is

2w 3
5. D5 = C5(0, ), the standard bivariate Cauchy distribution with density
1 1
fla,y) =

o (14 22 4 y2)3/2°
Note that for distributions Dy and D3 the scale has been chosen such that marginal

distributions have unit variance.

3.2. Centrally symmetric contaminated normals. Nine simulated distribu-
tions are two-component mixtures with the main component being the standard
bivariate normal distribution and the contamination component being a distribu-

tion centrally symmetric about 0. For a = .05,.10 or .20, these are:

90 >, respectively denoted

1. MN(a) := (1—a)Na(0,1)+aN5(0,%), & = ( 0 o

D67D7;D8;

2. MNC(a) := (1 — a)N2(0,I) + aC5(0, I), respectively denoted Dy, D1g, D11;
3. MNU(«) := (1 — a)N2(0,1) + « < glfgl ), where (71, Z3) and (Uy,Us)’
2/Us

are independent, (Z1, Zg)' is N2(0, 1), and Uy, Us are independent uniform on

(0,1), these mixtures being respectively denoted Dia, D13, D14.

Among the fourteen centrally symmetric distributions, D4 to D14 may be described

as being heavy-tailed to various degrees.

3.3. Asymmetric contaminated normals. Twelve simulated distributions are
two-component mixtures with the main component being the standard bivariate
normal distribution and the contamination component being a normal distribution

centered at a point # 0. For e = .05,.10 or .20, these are:
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, respectively denoted Dsy, Das, Dog.

1. MNyj(@) :== (1 — a)N3(0,1) + aNo(u1,%1), where g3 = (2,2) and X, =
le 1 ), respectively denoted Di5, D1g, D17;

2. MNiz(a) := (1 — a)Na(0,I) + aNo(u1, X2), where p1 := (2,2) and 3y =
( Z j ), respectively denoted Dig, D19, Doo;

3. MN2i(a) := (1 — @)N2(0,I) + aNa(uz, %), where po = (5,5) and ¥; =
111 1 ), respectively denoted D1, Dag, Dag;

4 ]WNgg(Oz)) = (1 — @)N2(0,1) + aNa(p2,X2), where ps = (5,5)" and Xy =

4. DESCRIPTION OF THE MONTE CARLO STUDY

4.1. Sample sizes and number of replications. In what follows, each combi-
nation of distribution and sample size is called a sampling situation. This Monte
Carlo experiment studies the behavior of the ten bivariate location estimators un-
der 78 sampling situations determined by three sample sizes: 20, 60 and 200, and
twenty-six distributions. For each sampling situation, 500 replications were used to

take into account sampling variability.

4.2. Algorithms. The Ranlib library of Fortran routines for random number gen-
eration has been used. Johnson (1987) provides algorithms for the simulation of
distributions that are ingredients of the twenty-six distributions used in this paper.

The algorithm of Rousseeuw and Ruts (1996) was used to compute both the
Tukey depth and the Liu depth of a point. The Tukey median was obtained from the
algorithm in Rousseeuw and Ruts (1998). The calculation of the spatial median was
based on algorithms AS 78 (Gower, 1974) and AS 143 (Bedall and Zimmermann,
1979); that of the Oja median was based on algorithm AS 277 (Niinimaa et al.,1992).
The simulation was done on seven SUN Ultra 5 workstations and the total execution
time was about 260 hours (10 hours per distribution).

In the course of the simulation, the algorithms to compute the Tukey and Oja
medians needed some adjustments. For some datasets, the algorithm in Rousseeuw
and Ruts (1998) makes use of “dithering” to compute the Tukey median. In some
cases where extreme observations were present, this yielded a “median” that was
outside the convex envelope of the sample. To remedy this problem, a slower

method of calculation has been implemented in which depth was computed on
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points of a grid centered on some preliminary estimate of the center. Since it proved
to be unable to handle some exceptional datasets when n = 200, the algorithm by
Niinimaa et al. (1992) to compute the Oja median also had to be slightly modified.
Two S-Plus programs using Fortran code and implementing the modifications can

be obtained from the authors.

4.3. Measures of performance. Given a bivariate point estimator T}, of § € R,

the following identity is readily obtained:
(1) E(Tn—0)(Tw —0) = E(TWT,) — E(TW)E(T,)" + (0 — E(T,))(0 — E(T%))',

provided the expectations are well defined. By analogy with the well known prop-

erty of real-valued estimators, the above can be written
MSE(T,) = Var(T,) + SQB(T}),

where M SE(T,,), Var(T,,) and SQB(T,,) will be called respectively the mean squared
error matriz, the covariance matriz and the squared bias matriz of T,,. For each
sampling situation in this study, we assume, as noted at the beginning of Section
2, that all location estimators 7, aim at estimating the true location parameter
0=0.

Let T denote the value of T}, for the i-th replication, i = 1,...,500. Then,

1 S S
= N (T T, )T -T,)

and
Ty = — T!
ts00 4=
are respectively the sample covariance matrix and sample bias of T},. At the sam-

pling level, the above identity says that

1 I —
— Tt =8,+T,T,,
which we will write as
(2) m(Tn) =S+ S/QTB(Tn)

Note that (2) holds whether or not the expectations are defined in (1).
The performance of each location estimator will be assessed by numerical func-
tions of its sample mean squared error and squared bias matrices. For several

estimators, nVar(T,,) — ¥ and nSQB(7,,) — 0 as n — co. For these estimators,
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assessing sample mean squared error, variability and bias is therefore less depen-
dent upon the sample sizes if one uses the scaled matrices nm(Tn), nsS,, and
nS/QTS(Tn) In the following, two numerical measures of accuracy are computed

for each estimator and each sampling situation. The first of these measures is

a function of the sample mean squared error matrix: M = |n ]\7L@(Tn)|l/2 =
n|m(Tn)|1/2, where | - | denotes the determinant. (Through the covariance

matrix component of the mean squared error matrix, M is also a measure of vari-
ability.) The second measure of accuracy is a function of the sample squared bias
matrix: B = [tr(nSQB(T,))]Y/2 = n!/2[tr(SQB(T},))]'/2, where tr is the trace
function. In the next section, robustness will also be measured through M and B
after restricting their use to the heavy-tailed distributions D4 to Dag.

Recall that the determinant of a covariance matrix is sometimes called the gener-
alized variance. Use of square roots is motivated here by the fact that, for bivariate
asymptotically normal bivariate estimators, asymptotic relative efficiency may be
defined as the ratio of the square roots of the generalized variances of the asymptotic

normal distributions [see Bickel (1964, p. 1083) or Serfling (1980, p. 141)].

5. RESULTS AND INTERPRETATION

The results are presented in a series of five tables at the end of the paper. In
all those tables, the performances of the location estimators are compared through

the numerical measures M and B, or some function of these.

5.1. Assessment of accuracy. As explained above, both M and B are viewed as
measures of accuracy. Small values of M reflect accuracy through low variability
and/or low bias; large values imply high variability and/or bias. From this point
of view, a highly accurate (resp. inaccurate) estimator is one having simultane-
ously low (resp. high) values of M and B. Obviously, the only aspect of accuracy
measured by B is bias.

Accuracy is first assessed through Table 1. In the latter, for each sampling
situation, the estimators are ranked according to increasing values of M (first and
second lines) and B (third and fourth lines). Table 2 is then used to assess the
accuracy of each estimator with respect to M, independently of the sample size and

for each sampled distribution. To construct that table, estimators are first ordered
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according to increasing values of M for each sample size; for each estimator, the
corresponding midranks are then averaged over all three samples sizes. Finally,
accuracy is also assessed through Table 3, which is the counterpart of Table 2 for
B. For both tables, estimators have been ordered according to increasing values
of the average midrank over all distributions, denoted 7, for Table 2 and 7p for
Table 3.

As expected from well-known optimality properties, for all sample sizes mean
is the most accurate estimator for Ny(0,1) and UD. Unsurprisingly, the same
estimator turns up as extremely inaccurate for distributions Cs(0,1), MNC(«)
and M NU («), all having no expectation. mean also exhibits average to poor ac-
curacy for DE5(0,I), t3, as well as mixtures M N(a) and MN;;(a) (except for
MN11(.05),n = 20), the more so as the sample size grows. In all cases of asym-
metric contamination, Table 3 shows that mean has overall the strongest bias.

It is seen that the 5%-trimmed means hd g5 and sd g5 coincide when n = 20, 60,
and differ very slightly when n = 200. For all sizes, their accuracy ranges from fairly
good to very good for Ny(0,I), UD and the mixtures M N (.05) and M N(.10); for
n = 200, they tend to be very good for MNC(.05), MNC(.10) and M NU(.05).
These estimators perform rather poorly for DE5(0,1), t3, C2(0,I), for most mix-
tures when n = 20,60 and practically all cases of asymmetric contamination. As
seen from Table 3, a strong bias is present for C5(0, I) and all mixtures.

The 10%-trimmed means hd 1g and sd 1g are identical when n = 20 and, except
for the MNU(«)’s, not significantly different when n = 60 or 200. Their accu-
racy ranges from good to very good for all sample sizes and distributions N2 (0, T),
DE5(0,I), UD, ts, all MN(«a)’s; if n = 200, the same holds true for all centrally
symmetric mixtures. For all sizes, hd 1o and sd 1 are very inaccurate for C2(0, 1)
and most asymmetric contaminated normals; if n = 20, they perform poorly for sev-
eral symmetric mixtures. It is also noted that these estimators are strongly biased
for asymmetric contaminated normals, though much less so than the 5%-trimmed
means. For heavy-tailed distributions Dy — Dog and n = 60, 200, the 10%-trimmed
means tend to be more accurate than the 5%-trimmed means.

The study shows that for all sample sizes and distributions, Imed estimates the
center rather poorly. Its performance ranges from average for heavy-tailed distribu-

tions such as Cy(0,I), MNC(.20), MNU(.20), M N12(.20), M N31(.20), M Na5(.20),
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to very inaccurate for mixtures M N (a), M N11(.05), M N11(.10) and M Np5(.05).
As size n grows, Imed tends to improve for distributions M Ny;(.20), M N15(.10),
M N>5(.05), while it tends to worsen for distributions ¢3, MNC(a) and MNU(«).
It is also noted that from Table 3 that Imed is strongly biased for N;(0,1),UD
and t3. This poor performance of Imed supports the conclusions of a simulation by
Fraiman and Meloche (1999) for a different set of distributions.

It is seen that vmed is a very accurate estimator of the center for DFE5(0, 1), as
expected from optimality properties of the usual median. For distributions Nx(0, I),
UD, MN(.05) and M Ny;(.05), vmed has a rather poor performance. For all other
distributions, the accuracy of vmed is fairly good, either measured from M or from
B.

For smaller sample sizes (n = 20,60), tmed is generally among the top three
most accurate estimators for heavy-tailed distributions such as t3 and C2(0, I), as
well as all mixtures. It does not however perform very well for most mixtures when
n = 200, and also for N2(0,I) and UD for all sample sizes. The performance of
tmed thus appears to depend on the sample size, more so than for other estimators.
For N5(0,1), the results of this study agree with those of Rousseeuw and Ruts
(1998).

For most sampling situations considered in the study, omed tends to be the sec-
ond most accurate estimator. A few exceptions are worth noting: for distributions
N3(0,I) and U D, the performance is rather mediocre; for M N (.05) and M NC(.05),
it is average. It is interesting to see that omed is more accurate for n = 200 than
for sizes n = 20, 60.

Finally, Tables 2 and 3 show that overall cmed is the most accurate and least
biased estimator. One can see from Table 1 that this tends to hold for most sampling
situations. Distributions for which more accurate and less biased estimators can be

found are N2(0,I), DE2(0,1),UD and some symmetric mixtures.

5.2. Assessment of robustness. Tables 4 and 5 allow us to compare the ten
location estimators according to a score of robustness which we now define for Table
4. Given an estimator and a sample size, the score of that estimator is obtained
from Table 1 by computing the midrank of that estimator according to increasing

values of M, then by taking the average of those midranks over the 23 heavy-tailed
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distributions D4 to Dsg. Similarly, scores in Table 5 are obtained using B as the
measure of accuracy. For each of these tables, the last line also shows the average
score of robustness 5 over the three sample sizes.

It is noted that in estimating the center of heavy-tailed distributions some
estimators are more dependent on the sample size than others. The medians
cmed, omed, vmed, Imed show little dependence, in contrast with the means and
tmed which all exhibit some degree of dependence. For tmed, this phenomenon
may be due to instability of the algorithm used to compute it when sample size
is large. In case of the trimmed means, the score tends to get smaller when the
sample size grows.

For sample sizes n = 60 or 200, hd. 19 and sd .19 are by far the most robust of all
means. Overall, these trimmed means are less robust than medians ecmed, omed,
tmed and vmed, but they appear as good if not better than Imed. As expected,
mean is the least robust of all estimators, showing the worst performance when
n = 200.

With respect to the average score of robustness, whether it is measured from
M or B, cmed clearly outperforms its competitors, with omed, tmed and vmed
appearing second, third and fourth. On the whole the least robust of all estimators

is Imed. Two medians, cmed and omed, show strong robustness for all sample sizes.

6. CONCLUSION

The performance of ten bivariate location estimators has been investigated un-
der seventy-eight sampling situations, the primary concern always being accuracy
and robustness. In addition to three sample sizes, fourteen centrally symmetric
distributions and twelve asymmetric contaminated normals were retained for the
study, most of these distributions having some degree of heavy-tailedness.

The study has shown that four bivariate medians and, to a lesser degree, two
depth-based trimmed means are very good alternatives to the arithmetic mean
for the estimation of a location parameter. Of all estimators, the spatial median
clearly stands as the best overall, followed by the Oja median and the Tukey median.
Furthermore, four of the medians are overall better than any of the depth-based

trimmed means. The latter perform best when the degree of trimming is highest
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(in our case 10%) and when n = 200; all four trimmed means lack robustness when
the sample size is small (n = 20).

Finally, it is noted that the good performance of the spatial median is not en-
tirely explained with help of the well-known measure of robustness of finite-sample
(replacement) breakdown point. Roughly speaking, this is the smallest fraction of
the n observations which, appropriately modified, can send the values of the esti-
mator arbitrarily far away. The spatial median and vector of coordinate medians
are known to have the same breakdown point of |(n + 1)/2]/n, the highest possi-
ble value for a translation equivariant estimator [Lopuhad and Rousseeuw (1991)].
Since the vector of coordinate medians is seen to rank fourth in this study, the
superior performance of the spatial median thus appears to be largely due to its

high efficiency, a quality reflected through low values of M and B.
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TABLE 1. Estimated accuracy as measured by M and B. For each
distribution and each sample size, estimators ordered according to
increasing M (first and second lines) and B (third and fourth lines).
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N>(0,1)

20

mean

hd o5

sd o5

hd 19

8d_10

cmed

tmed

omed

vmed

Ilmed

0.969

1.077

1.077

1.164

1.164

1.206

1.218

1.236

1.382

2.189

mean

tmed

cmed

omed

vmed

Imed

hd o5

sd o5

hd 19

sd 10

0.007

0.018

0.024

0.025

0.029

0.036

0.033

0.038

0.048

0.048

60

mean

hd o5

5d o5

hd 10

Sd_lo

cmed

omed

tmed

vmed

Ilmed

0.984

1.108

1.108

1.113

1.116

1.266

1.286

1.323

1.467

2.184

mean

5d.10

hd 10

tmed

hd o5

Sd.05

vmed

omed

cmed

Imed

0.095

0.099

0.100

0.105

0.115

0.115

0.116

0.118

0.118

0.156

200

mean

hd 1o

hd.o5

5d o5

Sd_lo

omed

cmed

tmed

vmed

Ilmed

1.069

1.084

1.087

1.087

1.158

1.331

1.332

1.363

1.591

2.426

hd. o5

Sd.05

mean

hd 10

Ilmed

5d.10

tmed

omed

cmed

vmed

0.045

0.046

0.053

0.055

0.056

0.057

0.067

0.075

0.075

0.095

DE,(0,1)

20

vmed

cmed

omed

tmed

mean

hd o5

5d o5

Ilmed

hd 10

5d 10

0.635

0.696

0.712

0.735

0.929

1.068

1.068

1.136

1.169

1.169

cmed

omed

vmed

tmed

mean

hd o5

hd 19

sd o5

sd 10

Imed

0.017

0.022

0.027

0.034

0.043

0.046

0.046

0.046

0.046

0.066

60

vmed

omed

tmed

cmed

hd 10

5d 10

mean

Imed

hd o5

5d o5

0.608

0.671

0.697

0.699

1.013

1.015

1.027

1.065

1.136

1.136

Ilmed

omed

vmed

cmed

tmed

hd o5

Sd.05

hd 10

Sdll()

mean

0.034

0.037

0.037

0.039

0.047

0.065

0.065

0.069

0.076

0.080

200

vmed

omed

tmed

cmed

hd_ 19

sd 10

sd o5

hd o5

mean

Ilmed

0.503

0.594

0.621

0.636

0.898

0.932

0.937

0.944

0.958

0.981

Ilmed

sd o5

omed

vmed

cmed

tmed

sd 19

hd o5

hd 19

mean

0.079

0.081

0.085

0.087

0.088

0.091

0.093

0.098

0.100

0.101

UD

20

mean

hd o5

sd o5

hd 1o

Sd_10

cmed

tmed

omed

vmed

Imed

1.035

1.105

1.105

1.186

1.186

2.053

2.058

2.128

2.267

6.670

Ilmed

mean

tmed

omed

cmed

hd o5

5d o5

vmed

hd 10

5d 10

0.041

0.085

0.093

0.101

0.105

0.108

0.108

0.109

0.128

0.128

60

mean

hd o5

Sd.05

hd 10

sd 10

cmed

omed

tmed

vmed

Ilmed

0.968

1.080

1.080

1.179

1.179

1.921

1.963

2.006

2.389

37.36

mean

hd o5

sd o5

hd 19

Sd_10

omed

cmed

vmed

tmed

Ilmed

0.045

0.053

0.053

0.066

0.066

0.076

0.081

0.083

0.091

0.341

200

mean

hd o5

Sd.05

Sd.lO

hd 1o

omed

cmed

tmed

vmed

Ilmed

1.054

1.145

1.145

1.161

1.173

2.078

2.082

2.156

2.658

156.2

mean

hd o5

sd o5

hd 19

8d_10

tmed

omed

cmed

vmed

Imed

0.034

0.036

0.036

0.047

0.052

0.056

0.064

0.065

0.138

0.806

t3

20

cmed

tmed

omed

vmed

Ilmed

mean

hd o5

Sd.05

hd 10

Sd.lo

1.504

1.557

1.594

1.725

2.520

3.135

3.412

3.412

3.442

3.442

vmed

tmed

cmed

omed

hd_ o5

sd o5

hd 19

sd 10

mean

Ilmed

0.047

0.075

0.080

0.090

0.096

0.096

0.110

0.110

0.113

0.153

60

cmed

tmed

omed

vmed

sd 10

hd 10

Imed

hd o5

Sd.05

mean

1.577

1.592

1.594

1.923

2.131

2.155

2.732

2.741

2.741

2.811

tmed

Imed

omed

cmed

hd 1o

vmed

hd o5

Sd.05

Sd.lo

mean

0.018

0.019

0.025

0.035

0.061

0.062

0.070

0.070

0.079

0.087

200

cmed

omed

vmed

hd 19

8d_10

tmed

hd o5

5d o5

Imed

mean

1.387

1.394

1.688

1.815

1.883

2.025

2.061

2.092

2.574

3.012

5d 10

5d o5

hd 10

hd o5

tmed

omed

cmed

vmed

mean

Ilmed

0.006

0.011

0.012

0.015

0.018

0.029

0.030

0.038

0.049

0.095
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TABLE 1. (Continued) Estimated accuracy as measured by M and
B. For each distribution and each sample size, estimators ordered
according to increasing M (first and second lines) and B (third

and fourth lines).

C2(0,1)

20

cmed

tmed

omed

vmed

Imed

hd 1o

sd 10

mean

hd o5

sd o5

2.512

2.639

2.795

2.843

3.754

7214

7214

7483

7782

7782

omed

tmed

cmed

vmed

Imed

hd o5

8d_05

mean

hd 10

8d_10

0.007

0.019

0.034

0.036

0.054

3.639

3.639

3.663

4.939

4.939

60

cmed

omed

tmed

vmed

Imed

Sd_lo

hd 10

hd o5

5d o5

mean

2.163

2.254

2.331

2.556

3.288

173.4

188.3

8196

8196

> 104

vmed

omed

cmed

tmed

Ilmed

hd 10

sd 10

hd o5

Sd.05

mean

0.113

0.114

0.136

0.140

0.257

1.770

1.909

7.141

7.141

11.43

200

cmed

omed

vmed

Imed

tmed

hd 19

Sd_10

hd o5

sd o5

mean

2.139

2.226

2.533

3.091

7.019

10.22

10.48

99.14

26.77

> 10°

vmed

cmed

omed

Imed

hd 10

tmed

hd.o5

5d.10

Sd.05

mean

0.024

0.030

0.038

0.061

0.156

0.177

0.189

0.242

0.409

17.43

MN(.05)

20

tmed

cmed

omed

mean

hd.o5

Sd_05

vmed

hd 10

sd 10

Ilmed

1.344

1.357

1.383

1.388

1.510

1.510

1.569

1.592

1.592

2.486

vmed

mean

Imed

cmed

omed

tmed

hd o5

Sd.05

hd 10

sd 10

0.066

0.075

0.089

0.101

0.107

0.108

0.114

0.114

0.140

0.140

60

cmed

omed

tmed

Sd_10

hd 19

mean

hd o5

sd o5

vmed

Ilmed

1.323

1.327

1.342

1.352

1.359

1.401

1.513

1.513

1.604

2.376

tmed

hd 10

5d 10

omed

cmed

mean

vmed

hd o5

Sd.05

Imed

0.018

0.019

0.020

0.024

0.031

0.058

0.059

0.064

0.064

0.120

200

Sd.05

hd 10

hd.o5

sd 10

cmed

omed

mean

vmed

tmed

Imed

1.237

1.238

1.240

1.291

1.320

1.328

1.354

1.616

1.666

2.237

Ilmed

tmed

vmed

Sd_05

mean

hd 19

omed

cmed

sd 10

hd o5

0.016

0.049

0.055

0.064

0.069

0.069

0.072

0.075

0.079

0.090

MN(.10)

20

cmed

tmed

omed

vmed

mean

hd o5

sd o5

hd 10

5d.10

Ilmed

1.519

1.534

1.562

1.715

1.870

2.039

2.039

2.100

2.100

2.576

mean

cmed

vmed

omed

hd o5

Sd_05

tmed

hd 19

sd 10

Ilmed

0.077

0.084

0.084

0.096

0.096

0.096

0.107

0.118

0.118

0.191

60

cmed

omed

5d 10

hd 1o

tmed

mean

hd.o5

Sd.OS

vmed

Imed

1.370

1.382

1.396

1.402

1.419

1.592

1.624

1.624

1.654

2.450

vmed

Imed

tmed

cmed

omed

Sd_10

mean

hd 19

hd o5

sd.o5

0.012

0.015

0.017

0.017

0.019

0.024

0.025

0.029

0.034

0.034

200

hd 10

omed

cmed

Sd_l(]

sd o5

hd o5

tmed

vmed

mean

Ilmed

1.381

1.426

1.426

1.462

1.495

1.508

1.667

1.723

1.826

2.450

tmed

omed

cmed

vmed

sd 10

hd o5

hd 10

mean

sd o5

Imed

0.020

0.024

0.025

0.041

0.041

0.052

0.055

0.066

0.068

0.097

MN(.20)

20

cmed

tmed

omed

vmed

mean

hd.o5

5d o5

Imed

hd 10

sd 10

1.648

1.681

1.732

1.892

2.374

2.543

2.543

2.631

2.682

2.682

hd 19

sd 10

Imed

omed

cmed

hd o5

8d_05

tmed

vmed

mean

0.046

0.046

0.052

0.063

0.063

0.070

0.070

0.074

0.091

0.097

60

cmed

omed

Sd_10

hd 10

vmed

tmed

mean

hd o5

sd o5

Ilmed

1.781

1.831

2.092

2.099

2.170

2.176

2.525

2.672

2.672

3.003

vmed

cmed

omed

tmed

hd 1o

Ilmed

Sd_lo

hd o5

5d o5

mean

0.010

0.013

0.018

0.037

0.037

0.040

0.043

0.045

0.045

0.046

200

cmed

omed

tmed

Sd_10

hd 10

vmed

8d_05

hd o5

mean

Imed

1.736

1.746

1.780

1.864

1.894

1.984

2.275

2.311

2.621

2.941

sd 10

hd 19

mean

cmed

omed

hd o5

tmed

vmed

5d o5

Imed

0.082

0.117

0.119

0.146

0.150

0.152

0.154

0.156

0.156

0.175
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TABLE 1. (Continued) Estimated accuracy as measured by M and
B. For each distribution and each sample size, estimators ordered
according to increasing M (first and second lines) and B (third
and fourth lines).

19

cmed | tmed | omed | vmed | lmed | mean | hd gs

Sd.05

hd 10

sd 10

2 1.255 | 1.294 | 1.298 | 1.398 | 2.119 | 707.8 | 784.3

784.3

872.0

872.0

omed | tmed | vmed | cmed | lmed | mean | hd.gs

sd o5

hd 19

Sd_10

0.052 | 0.059 | 0.059 | 0.066 | 0.068 | 1.444 | 1.577

1.577

1.697

1.697

cmed | omed | tmed | vmed | sdig | hd.io | Ilmed

hd.o5

5d o5

mean

MNC(.05) | 60 1.343 | 1.365 | 1.382 | 1.652 | 1.694 | 1.695 | 2.307

1553

1553

2244

hd1o | sdio | vmed | lmed | cmed | tmed | omed

hd o5

Sd.05

mean

0.016 | 0.026 | 0.068 | 0.073 | 0.075 | 0.079 | 0.085

3.133

3.133

3.435

hd1g | hdgs | sdos | cmed | sdqig | omed | vmed

tmed

Imed

mean

200 1.127 1.160 1.162 | 1.216 | 1.227 | 1.243 | 1.459

2.074

2.202

600.3

sdos | vmed | sdig | hdos | cmed | hd.ig | omed

tmed

Imed

mean

0.105 | 0.113 | 0.119 | 0.123 | 0.125 | 0.129 | 0.133

0.179

0.184

2.026

cmed | tmed | omed | vmed | lmed | hdig | sd 1o

mean

hd o5

Sd_05

20 1.363 | 1.417 | 1.425 | 1.592 | 2.203 | 25.16 | 25.16

433.2

478.8

478.8

Ilmed | tmed | omed | cmed | vmed | hd 19 | sd.1g

mean

hd o5

sd o5

0.051 | 0.057 | 0.062 | 0.065 | 0.066 | 0.087 | 0.087

3.266

3.344

3.344

omed | ecmed | tmed | vmed | sdig | hdig | Imed

hd o5

sd o5

mean

1.229 | 1.231 | 1.233 | 1.473 | 1.995 | 2.001 | 2.332

138.2

138.2

384.6

MNO(lO) 60 omed Sd.lO hd.lO tmed | vmed Ilmed | cmed

hd o5

Sd.OS

mean

0.077 | 0.080 | 0.087 | 0.091 | 0.095 | 0.096 | 0.099

1.102

1.102

1.775

omed | hd g | hdos | sdgs | sd.io | vmed | tmed

Imed

cmed

mean

200 1.378 | 1.388 | 1.405 | 1.461 | 1.479 | 1.690 | 1.904

2.311

5.623

1005

vmed | tmed | omed | hdgs | hdig | sdgs | sdig

Imed

cmed

mean

0.047 | 0.064 | 0.077 | 0.087 | 0.093 | 0.095 | 0.105

0.109

0.114

0.855

cmed | tmed | omed | vmed | lmed | hd.1g | sd.1o

mean

hd o5

sd o5

1.421 | 1.430 | 1.453 | 1.683 | 2.356 | 49.94 | 49.94

3222

3439

3439

20 tmed | vmed | cmed | omed | lmed | hdig | sd.g

mean

hd o5

Sd_05

0.093 | 0.095 | 0.096 | 0.120 | 0.161 | 0.911 | 0.911

18.22

10.17

19.17

cmed | omed | vmed | lmed | sdig | hd.io | tmed

hd o5

Sd.OS

mean

MNC(.20) | 60 1.305 | 1.367 | 1.660 | 2.247 | 2.343 | 2.425 | 5.015

49.66

49.66

> 10%

cmed | omed | vmed | sdqig | Imed | hdqig | tmed

hd o5

5d o5

mean

0.042 | 0.054 | 0.057 | 0.119 | 0.129 | 0.145 | 0.231

0.548

0.548

51.90

cmed | hd g | omed | sdig | vmed | sdgs | hdgs

Imed

tmed

mean

200 1.367 | 1.576 | 1.577 | 1.613 | 1.637 | 1.790 | 1.889

2.390

23.56

> 107

vmed | ecmed | omed | sdgs | sdig | Imed | hdig

hd o5

tmed

mean

0.008 | 0.038 | 0.041 | 0.048 | 0.060 | 0.068 | 0.071

0.079

0.808

28.01

cmed | tmed | omed | vmed | lmed | hd.ig | sd.1o

mean

hd o5

sd o5

20 1.380 | 1.398 | 1.437 | 1.536 | 2.264 | 33.47 | 33.47

37.37

38.89

38.89

tmed | omed | Imed | emed | vmed | mean | hdqg

sd 10

hd o5

Sd_05

0.070 | 0.071 | 0.073 | 0.075 | 0.108 | 0.777 | 0.797

0.797

0.874

0.874

cmed | omed | tmed | vmed | Imed | sdqg | hd g

hd o5

5d o5

mean

MNU(.05) | 60 1.384 | 1.394 | 1.402 | 1.611 | 2.234 | 29.26 | 29.53

243.2

243.2

245.9

vmed | emed | omed | tmed | Ilmed | hdig | sd 10

hd.o5

5d o5

mean

0.045 | 0.094 | 0.102 | 0.103 | 0.129 | 0.844 | 0.849

0.932

0.932

1.138

hdig | hdgs | cmed | omed | sdgs | sd.ig | vmed

tmed

Imed

mean

200 1.320 | 1.397 | 1.412 | 1.436 | 1.459 | 1.479 | 1.767

2.258

2.470

514.5

cmed | omed | vmed | hd 19 | lmed | tmed | hd gs

sd o5

5d 10

mean

0.013 | 0.014 | 0.019 | 0.035 | 0.042 | 0.056 | 0.057

0.066

0.081

0.816
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TABLE 1. (Continued) Estimated accuracy as measured by M and
B. For each distribution and each sample size, estimators ordered
according to increasing M (first and second lines) and B (third
and fourth lines).

tmed | emed | omed | vmed | Ilmed | hdgs | sdos | hdig | sd.io | mean

2 1.449 | 1.454 | 1.516 | 1.646 | 2.325 | 400.4 | 400.4 | 413.3 | 413.3 | 1013

vmed | tmed | cmed | omed | Ilmed | mean | hdig | sdig | hdos | sdos

0.090 | 0.093 | 0.099 | 0.106 | 0.112 | 0.221 | 1.179 | 1.179 | 1.437 | 1.437

cmed | tmed | omed | vmed | lmed | sdig | hdig | hdos | sdos | mean

MNU(.10) | 60 1.416 | 1.449 | 1.483 | 1.664 | 2.596 | 3.046 | 3.065 | 337.4 | 337.4 | 537.7

vmed | hd1g | sdig | omed | tmed | cmed | Ilmed | hdgs | sdos | mean

0.012 | 0.015 | 0.025 | 0.034 | 0.045 | 0.052 | 0.080 | 1.092 | 1.092 | 1.310

cmed | omed | hdqg | vmed | hdgs | sdig | sdgs | lmed | tmed | mean

200 1.481 | 1.489 | 1.515 | 1.762 1.8-21 2.029 | 2.345 | 2.511 | 4.765 | 1801

vmed | hdgs | omed | sdos | sdig | tmed | emed | hd 19 | lmed | mean

0.025 | 0.032 | 0.038 | 0.041 | 0.045 | 0.051 | 0.054 | 0.054 | 0.069 | 5.759

cmed | omed | vmed | Ilmed | tmed | hdig | sdig | mean | hdos | sdos

20 1.691 | 1.779 | 1.864 | 2.788 | 72.58 | 263.1 | 263.1 | 402.9 | 421.6 | 421.6

vmed | lmed | omed | ecmed | hd1g | sd.io | hdgos | sdos | mean | tmed

0.109 | 0.110 | 0.124 | 0.128 | 0.855 | 0.855 | 1.511 | 1.511 | 1.530 | 2.542

cmed | tmed | omed | vmed | Imed | hdqg | sdig | hdgs | sdos | mean

1.717 | 1.773 | 1.821 | 2.109 | 2.750 | 3.741 | 6.528 | 6453 | 6453 | 8099

MNU(.20) | 60 tmed | ecmed | omed | vmed | Ilmed | hdig | sd.ig | mean | hdgs | sd.gs

0.097 | 0.098 | 0.099 | 0.107 | 0.124 | 0.176 | 0.305 | 6.488 | 9.034 | 9.034

cmed | omed | vmed | hdig | sdig | lmed | hdgs | sdos | tmed | mean

200 1.618 | 1.638 | 1.818 | 2.084 | 2.594 | 2.662 | 4.025 | 6.990 | 13.00 | 5199

omed | vmed | ecmed | hdig | sdig | hdgs | Ilmed | sdgs | tmed | mean

0.036 | 0.038 | 0.069 | 0.087 | 0.115 | 0.128 | 0.139 | 0.174 | 0.286 | 7.048

mean | hdgs | sdos | cmed | tmed | hd.1g | sd.ig | omed | vmed | lmed

1.385 | 1.502 | 1.502 | 1.570 | 1.597 | 1.629 | 1.629 | 1.637 | 1.713 | 2.592

20 cmed | tmed | omed | vmed | Imed | hdqg | sdig | hdgs | sdos | mean

0.251 | 0.250 | 0.261 | 0.287 | 0.305 | 0.535 | 0.535 | 0.541 | 0.541 | 0.572

cmed | omed | tmed | hdig | sdig | mean | hdgs | sdgs | vmed | lmed

MN11(.05) | 60 1.606 | 1.613 | 1.622 | 1.711 | 1.713 | 1.801 | 1.893 | 1.893 | 1.927 | 2.517

Imed | emed | omed | tmed | vmed | hdig | sdig | hdgs | sdos | mean

0.581 | 0.584 | 0.585 | 0.589 | 0.621 | 0.941 | 0.942 | 1.019 | 1.019 | 1.094

cmed | omed | tmed | hdig | sdig | hdos | sdgs | vmed | mean | Ilmed

1.741 | 1.747 | 1.789 | 2.057 | 2.062 | 2.152 | 2.164 | 2.233 | 2.354 | 2.847

200 tmed | ecmed | omed | Imed | vmed | hdig | sdig | sdos | hdgs | mean
0.928 | 0.933 | 0.941 | 0.968 | 1.053 | 1.610 | 1.611 | 1.707 | 1.723 | 1.999
cmed | omed | vmed | mean | tmed | hdogs | sdgs | hdig | sdig | lmed

20 1.638 | 1.718 | 1.967 | 1.973 | 2.007 | 2.034 | 2.034 | 2.143 | 2.143 | 2.602

cmed | Imed | omed | tmed | vmed | hdig | sdig | hdgs | sdos | mean

0.519 | 0.554 | 0.554 | 0.599 | 0.634 | 1.078 | 1.078 | 1.131 | 1.131 | 1.187

cmed | omed | tmed | vmed | hd1g | sdig | mean | hdgs | sdgs | Imed

MN11(.10) | 60 2.057 | 2.075 | 2.129 | 2.540 | 2.574 | 2.578 | 2.730 | 2.795 | 2.795 | 3.288

cmed | omed | tmed | Ilmed | vmed | hd g | sdio | hdos | sdos | mean

1.159 | 1.162 | 1.167 | 1.169 | 1.296 | 1.893 | 1.893 | 2.050 | 2.050 | 2.195

cmed | omed | tmed | vmed | hd1g | sdig | hdos | sdos | lmed | mean

200 2.689 | 2.734 | 2.769 | 3.423 | 3.649 | 3.678 | 3.838 | 3.884 | 3.944 | 4.167

cmed | tmed | omed | Ilmed | vmed | hd1g | sdio | sdos | hdos | mean

1.950 | 1.956 | 1.989 | 2.077 | 2.205 | 3.263 | 3.266 | 3.494 | 3.495 | 3.961
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TABLE 1. (Continued) Estimated accuracy as measured by M and
B. For each distribution and each sample size, estimators ordered
according to increasing M (first and second lines) and B (third
and fourth lines).
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cmed | tmed | omed | vmed | mean | hdgs | sdos

hd .10

5d.10

Imed

20 2428 | 2.621 | 2.652 | 2.991 | 3.203 | 3.350 | 3.350

3.576

3.576

3.791

cmed | lmed | tmed | omed | vmed | hd1g | sd.ag

hd o5

sd o5

mean

1.367 | 1.402 | 1.427 | 1.453 | 1.574 | 2.359 | 2.359

2.450

2.450

2.514

cmed | omed | tmed | vmed | sdig | hdig | mean

Ilmed

hd o5

sd o5

MN11(.20) | 60 3.218 | 3.381 | 3.413 | 4.133 | 4.682 | 4.693 | 4.741

4.782

4.978

4.978

cmed | tmed | omed | lmed | vmed | sd.ig | hd.1g

hd o5

Sd.05

mean

2.296 | 2.386 | 2.397 | 2.447 | 2.645 | 3.848 | 3.855

4.063

4.063

4.232

cmed | omed | tmed | vmed | lmed | hd1g | sd.ig

hd o5

sd g5

mean

200 5.214 | 5.415 | 5.542 | 7.175 | 7.380 | 7.728 | 7.877

8.057

8.075

8.394

cmed | lmed | tmed | omed | vmed | sd.ig | hd. 1o

sd o5

hd o5

mean

4.400 | 4.461 | 4.563 | 4.570 | 5.037 | 7.115 | 7.163

7.511

7.531

8.049

cmed | omed | tmed | mean | vmed | hdgs | sdos

hd 10

sd 10

Imed

20 1.448 | 1.453 | 1.454 | 1.591 | 1.693 | 1.693 | 1.693

1.738

1.738

2.368

cmed | omed | tmed | lmed | vmed | hd1g | sd.1g

hd o5

Sd.05

mean

0.308 | 0.310 | 0.312 | 0.332 | 0.350 | 0.590 | 0.590

0.600

0.600

0.672

cmed | omed | tmed | hdqg | sdig | vmed | mean

hd o5

sd o5

Imed

1.442 | 1.449 | 1.526 | 1.723 | 1.725 | 1.749 | 1.865

1.895

1.895

2.490

MNy2(.05) | 60 vmed | cmed | omed | tmed | lmed | sdig | hdio

hd.o5

Sd.05

mean

0.375 | 0.391 | 0.399 | 0.401 | 0.403 | 0.787 | 0.788

0.992

0.992

1.124

cmed | omed | hdig | sdio | vmed | hdgs | sdos

tmed

mean

Imed

200 1.637 | 1.658 | 1.982 | 2.052 | 2.068 | 2.108 | 2.121

2.363

2.611

2.688

Imed | emed | omed | tmed | vmed | hdqig | sd.ig

8d_05

hd o5

mean

0.727 | 0.800 | 0.813 | 0.876 | 0.916 | 1.476 | 1.478

1.575

1.593

2.142

tmed | cmed | omed | vmed | mean | hdgs | sdgs

hd 10

3d.10

Imed

1.665 | 1.667 | 1.674 | 1.981 | 2.191 | 2.291 | 2.291

2.390

2.390

2.724

20 cmed | tmed | omed | Imed | vmed | hdq1g | sd.ig

hd o5

sd o5

mean

0.429 | 0.440 | 0.442 | 0.473 | 0.510 | 0.999 | 0.999

1.136

1.136

1.195

cmed | tmed | omed | vmed | hdig | sdig | hdos

sd o5

Ilmed

mean

MN15(.10) | 60 2.024 | 2.072 | 2.073 | 2.535 | 2.831 | 2.832 | 3.113

3.113

3.143

3.282

cmed | tmed | omed | Imed | vmed | hdig | sd.ig

hd o5

sd o5

mean

0.973 | 0.993 | 0.997 | 1.047 | 1.076 | 1.803 | 1.803

2.103

2.103

2.355

cmed | omed | vmed | lmed | hdig | sdig | sdos

hd o5

tmed

mean

200 2.166 | 2.214 | 2.723 | 3.191 | 3.214 | 3.268 | 3.684

3.685

3.828

4.441

cmed | lmed | omed | tmed | vmed | sd.ig | hd.ig

8d_05

hd o5

mean

1.414 | 1.423 | 1.448 | 1.549 | 1.619 | 2.667 | 2.669

3.057

3.086

3.928

cmed | tmed | omed | vmed | mean | Ilmed | hd g5

sd o5

hd 10

5d.10

20 2.047 | 2.122 | 2.148 | 2.467 | 3.437 | 3.487 | 3.537

3.537

3.657

3.657

cmed | omed | tmed | Imed | vmed | hd1g | sd.ig

hd o5

sd o5

mean

0.967 | 1.004 | 1.005 | 1.072 | 1.111 | 2.202 | 2.202

2.331

2.331

2.465

cmed | omed | tmed | vmed | Ilmed | hdig | sd.ig

hd o5

sd o5

mean

MN15(.20) | 60 2.549 | 2.696 | 2.706 | 3.167 | 3.760 | 4.524 | 4.533

1,923

4.928

5.171

Imed | emed | tmed | omed | vmed | sd.10 | hd 19

hd o5

5d o5

mean

1.612 | 1.633 | 1.691 | 1.715 | 1.837 | 3.482 | 3.492

3.911

3.911

4.287

cmed | tmed | omed | vmed | lmed | sdig | hd.ig

8d_05

hd o5

mean

200 4.196 | 4.434 | 4.447 | 5.349 | 6.015 | 7.110 | 7.223

8.120

8.244

9.168

cmed | lmed | tmed | omed | vmed | sd.ig | hd 1o

Sd_05

hd o5

mean

3.074 | 3.083 | 3.181 | 3.215 | 3.493 | 5.952 | 6.073

6.803

6.828

7.916
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TABLE 1. (Continued) Estimated accuracy as measured by M and
B. For each distribution and each sample size, estimators ordered
according to increasing M (first and second lines) and B (third

and fourth lines).

MNyy (.05)

20

cmed

omed

tmed

vmed

hd 10

sd 10

hd.o5

sd o5

mean

Imed

1.450

1.470

1.503

1.708

2.278

2.278

2.304

2.304

2.305

2.480

cmed

tmed

omed

Imed

vmed

hd 10

8d_10

hd o5

5d 5

mean

0.370

0.391

0.393

0.396

0.410

1.256

1.256

1.365

1.365

1.499

60

cmed

omed

tmed

vmed

Imed

Sd_lg

hd 10

hd o5

5d o5

mean

1.587

1.619

1.634

1.984

2.536

2.807

2.819

3.190

3.190

3.355

cmed

tmed

omed

Ilmed

vmed

hd 10

sd 10

hd o5

Sd.05

mean

0.620

0.625

0.637

0.640

0.689

1.794

1.796

2.241

2.241

2.683

200

cmed

omed

tmed

vmed

Imed

hd 10

Sd_10

Sd_05

hd o5

mean

2.029

2.078

2.136

2.478

3.178

3.710

3.722

4.600

1613

5.681

cmed

omed

tmed

Ilmed

vmed

sd 10

hd 1o

hd.o5

Sd.05

mean

1.186

1.211

1.228

1.234

1.300

2.932

3.025

3.820

3.823

5.027

MNy;(.10)

20

cmed

tmed

omed

vmed

Imed

mean

hd 10

Sd_10

hd o5

5d o5

1.828

1.921

1.981

2.216

3.130

3.977

4.067

4.067

4.103

4.103

cmed

tmed

omed

Ilmed

vmed

hd 10

sd 10

hd o5

Sd.05

mean

0.782

0.827

0.832

0.877

0.895

2.840

2.840

3.034

3.034

3.180

60

cmed

tmed

omed

vmed

Imed

Sd_10

hd 10

hd o5

5d o5

mean

2.127

2.244

2.273

2.589

3.200

4.965

4.975

5.473

5.473

5.762

cmed

Imed

tmed

omed

vmed

sd 10

hd 1o

hd.o5

Sd.05

mean

1.308

1.337

1.360

1.389

1.458

4.209

4.217

4.834

4.834

5.452

200

cmed

omed

tmed

vmed

Imed

sd 10

hd 1o

sd o5

hd o5

mean

3.222

3.451

4.109

4.125

4.385

7.842

7.849

9.146

9.247

10.22

Imed

cmed

omed

tmed

vmed

Sd_10

hd 10

Sd_05

hd o5

mean

2.431

2.432

2.570

2.678

2.767

7.005

7.217

8.450

8.4%3

9.851

M Ny (:20)

20

cmed

omed

tmed

vmed

Imed

mean

hd o5

sd o5

hd 10

8d.10

3.195

3.939

4.050

4.278

5.298

7.496

7.627

7.627

7.734

7.734

cmed

vmed

Imed

omed

tmed

hd 10

Sd_10

hd o5

5d o5

mean

1.794

2.068

2.100

2.163

2.184

5.609

5.609

5.950

5.950

6.127

60

cmed

omed

tmed

vmed

Imed

hd 1o

sd 10

mean

hd o5

Sd.05

4.345

5.038

5.427

5.594

6.588

11.15

11.15

11.81

11.91

11.91

cmed

Imed

vmed

tmed

omed

sd 10

hd 10

hd o5

sd o5

mean

3.115

3.424

3.462

3.520

3.546

9.481

9.486

10.11

10.11

10.72

200

cmed

omed

tmed

vmed

Imed

hd 10

Sd_lo

Sd_05

hd o5

mean

6.980

8.174

8.327

9.228

9.872

18.71

19.07

19.87

19.97

20.64

cmed

Imed

vmed

omed

tmed

Sd_lg

hd 10

Sd_05

hd 5

mean

5.594

5.967

6.262

6.368

6.400

17.32

17.44

18.59

18.62

19.94

M Ny (.05)

20

cmed

omed

tmed

vmed

Imed

mean

hd.o5

sd o5

hd 10

Sd.lO

1.460

1.533

1.534

1.722

2.458

2.627

2.702

2.702

2.713

2.713

Imed

cmed

tmed

omed

vmed

hd 19

Sd_10

hd o5

5d o5

mean

0.326

0.328

0.329

0.329

0.383

1.318

1.318

1.407

1.407

1.538

60

cmed

tmed

omed

vmed

hd 10

Sd_10

Ilmed

hd. o5

5d 5

mean

1.589

1.632

1.640

1.914

2.460

2.460

2.818

2.067

2.967

3.203

cmed

Imed

tmed

omed

vmed

hd 10

Sd_lo

hd o5

5d o5

mean

0.609

0.615

0.622

0.635

0.707

1.670

1.671

2.148

2.148

2.618

200

cmed

omed

vmed

Imed

hd 10

Sd_lg

Sd_05

hd o5

mean

tmed

1.882

1.911

2.243

2.924

3.286

3.350

4.188

4.193

5.632

7.983

Imed

cmed

omed

vmed

tmed

hd 10

Sd_10

8d_05

hd o5

mean

0.986

1.056

1.082

1.177

1.399

2.643

2.662

3.484

3.504

4.940
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TABLE 1. (Continued) Estimated accuracy as measured by M and
B. For each distribution and each sample size, estimators ordered
according to increasing M (first and second lines) and B (third
and fourth lines).
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MNyy(.10)

20

cmed

tmed

omed

vmed

Imed

hd 10

Sd.lo

hd o5

5d o5

mean

1.794

1.796

1.871

2.152

2.835

4.115

4.115

4.182

4.182

4.187

tmed

cmed

omed

Ilmed

vmed

hd 19

sd 10

hd o5

Sd_05

mean

0.732

0.735

0.762

0.818

0.842

2.755

2.755

2.965

2.965

3.140

60

cmed

tmed

omed

vmed

Imed

hd 10

5d 10

hd.o5

8d_05

mean

2.200

2.275

2.363

2.689

3.383

5.121

5.135

5.959

5.959

6.189

cmed

Imed

tmed

omed

vmed

hd 10

5d.10

hd o5

sd o5

mean

1.265

1.277

1.287

1.352

1.426

3.987

3.992

4.781

4.781

5.511

200

cmed

omed

vmed

tmed

Imed

sd 10

hd 19

sd o5

hd o5

mean

3.250

3.508

3.950

4.076

4.618

7.508

7.751

9.274

9.339

10.92

cmed

Imed

omed

tmed

vmed

Sd.lO

hd 10

Sd.05

hd.o5

mean

2.378

2.434

2.508

2.562

2.723

6.560

6.728

8.108

8.143

10.00

M N, (.20)

20

cmed

tmed

omed

vmed

Imed

hd.o5

5d o5

mean

hd 10

8d_10

3.040

3.507

3.519

3.677

5.230

8.296

8.296

8.372

8.508

8.508

cmed

tmed

vmed

omed

Imed

hd 10

5d.10

hd o5

sd o5

mean

1.755

1.993

1.997

2.023

2.115

5.691

5.691

6.022

6.022

6.346

60

cmed

tmed

omed

vmed

Imed

hd 19

sd 19

hd o5

Sd_05

mean

4.486

4.863

4.946

5.935

6.480

12.23

12.25

13.44

13.44

13.89

cmed

Imed

tmed

omed

vmed

Sd.lO

hd 10

hd o5

5d o5

mean

3.168

3.379

3.387

3.524

3.535

9.592

9.596

10.51

10.51

11.24

200

cmed

omed

vmed

tmed

Imed

hd 10

3d.10

hd o5

5d o5

mean

6.807

7.727

9.105

9.579

9.899

19.09

19.21

20.72

20.83

22.45

cmed

Imed

omed

vmed

tmed

sd 10

hd 19

sd o5

hd o5

mean

5.407

5.656

6.044

6.089

6.102

16.20

16.48

18.11

18.13

20.01
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TABLE 2. Averaged midrank of each estimator with respect to M

JEAN-CLAUDE MASSE! AND JEAN-FRANCOIS PLANTE

over all three sample sizes and each distribution.

|| cmed | omed | tmed | vmed | hd 19 | sd 10 | hd g5 | sd g5 |

Ilmed | mean

N3 (0, 1) 6.33] 7.00] 7.67] 9.00] 3.50 | 4.83 ] 2.67 [ 3.00 [ 10.00 [ 1.00
DE,(0,1) || 333] 233 333] 1.00| 6.50 | 7.17 | 8.00 | 7.67 | 8.67 | 7.00
UD 6.33| 7.00 | 7.67[ 9.00| 4.67 | 4.33 ] 2.50 | 2.50 | 10.00 | 1.00
ts 1.00 [ 2.67[ 3.33] 3.67] 650 6.50 [ 7.67[ 8.00] 7.00[ 8.67
C5(0,1) 1.00 [ 2.33] 3.33] 3.67] 6.50] 6.50 | 8.67 | 9.00 | 4.67] 9.33
MN(.05) | 2.67] 3.67| 4.33] 8.00| 517 5.50 | 5.33| 4.67 | 10.00 | 5.67
MN(.10)) || 1.33] 2.67] 467 7.00] 4.50 [ 5.17[ 6.67] 6.33[10.00 [ 6.67
MN(.20)) || 1.00 | 2.33] 3.67| 5.00[ 6.17[ 550 7.67| 7.33] 9.33| 7.00
MNC(.05) || 2.00| 3.67] 4.33] 5.00| 550 | 6.50 | 6.00 | 6.33] 7.00 | 8.67
MNC(.10)) || 400 1.67| 4.00 | 4.67| 483 ] 550 | 7.00 | 7.33| 6.67] 9.33
MNC(20)) || 100 [ 2.67] 6.00 | 4.00| 4.83] 517 833 8.00| 5.67] 9.33
MNU(.05) || 1.67| 3.00[ 4.33] 5.00[ 4.83] 6.17[ 6.67[ 7.67| 6.33] 9.33
MNU(.10)) || 1.33] 2.67| 4.00 | 4.00| 6.17] 6.83| 6.67 | 7.33| 6.00 [ 10.00
MNU(20)) | 1.00[ 2.33] 533 ] 333 550 6.17| 8.33| 8.67| 5.00] 9.33
MNy;(.05) || 2.00] 4.00| 3.67| 8.67| 4.83]| 5.50 | 5.33 | 5.67 | 10.00 | 5.33
MNy;(10)) [ 1.00 [ 2.00 | 3.67| 3.67[ 6.17[ 683 7.33| 7.67| 9.67[ 7.00
MNy,(.20)) || 1.00 [ 2.33] 2.67| 4.00] 6.83] 6.83| 817 817| 7.67] 7.33
MNy5(.05) || 1.00[ 2.00| 4.67] 6.00| 517 5.83| 6.67 | 7.00 | 10.00 | 6.67
MN5(.10)) || 1.33] 2.67] 4.00| 3.67] 6.17] 6.83| 7.33| 7.00| 7.67] 8.33
MN5(.20)) || 1.00 [ 2.67] 2.33| 4.00] 7.33][ 7.67| 833 8.00| 533] 8.33
MN(.05) || 1.00| 2.00] 3.00[ 4.00] 6.17] 6.17] 833 | 8.00[ 6.67] 9.67
MNy (.10)) || 1.00 [ 2.67] 2.33] 4.00] 7.17] 6.50 | 9.00 [ 8.67| 5.00[ 8.67
MN3(-20)) || 1.00 [ 2.00 [ 3.00 | 4.00 | 7.33] 7.67 | 850 [ 850 | 5.00 | 8.00
MN,,(.05) || 1.00[ 2.33] 5.00| 3.67| 6.83] 6.83 | 8.00 | 7.67 | 5.33| 833
MNy,(.10)) [ 1.00 [ 2.67] 2.67| 3.67] 6.33] 6.67| 850 | 8.50 | 5.00 [ 10.00
MNy(20)) [ 1.00 [ 2.67] 2.67| 3.67] 7.33][ 767 7.83] 7.83| 5.00] 9.33
| Tm | 1.82] 292] 4.06] 4.82] 588] 6.26] 7.13] 7.17| 726 7.67 |
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TABLE 3. Averaged midrank of each estimator with respect to B
over all three sample sizes and each distribution.
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|| cmed | omed | tmed | vmed | Ilmed | hd.10 | sd.10

| sd o5 | hd g5 | mean

N> (0,1) 7.00 | 6.67| 4.33| 7.33| 7.00| 5.33| 6.00 | 4.83 | 4.83 1.67
DE5(0,1) 3.33 | 2.67| 5.00| 3.00| 4.00| 850 | 8.17| 4.83| 7.17| 8.33
UD 6.67 | 5.67| 6.00| 833| 7.00| 6.00| 6.33| 3.67 | 4.00 1.33
t3 4.67 | 4.33| 2.67| 5.00| 7.33| 5.17| 5.83 | 5.00| 5.67| 9.33
C3(0,1) 2.67 | 2.00| 4.00| 2.00| 4.67| 6.83| 817 | 8.00| 7.33| 9.33
MN(.05) 5.67| 533 | 3.00| 3.67| 4.67| 550 | 7.17| 6.50 | 883 | 4.67
MN(.10) 3.00 | 433 | 4.00| 2.67| 7.33| 7.83| 6.17| 7.67| 6.67| 5.33
M N(.20) 3.67 | 4.00| 6.33| 6.33| 6.33| 2.83| 3.17| 7.83| 6.83 7.67
MNC(.05) 4.67 | 5.00| 5.33| 2.67| 6.00| 5.50| 4.83 | 5.67| 6.67| 8.67
MNC(.10) 6.67 | 2.33| 2.67| 3.67| 5.00| 4.83| 5.17| 8.00| 7.33| 9.33
MNC(.20) 2.00 | 3.00| 5.67| 2.00| 5.33| 6.50| 5.17| 7.33 | 8.67| 9.33
MNU(.05) 2.33 | 2.33| 3.67| 3.00| 4.33| 5.83| 7.83 | 867 | 833 | 8.67
MNU(.10) 5.33 | 3.67| 4.33| 1.00| 7.00 | 5.83 | 5.17| 7.33| 6.67| 8.67
MNU(.20) 3.00 | 233 | 6.67| 2.33| 4.67| 5.17| 5.83| 833 | 7.67| 9.00
M Ny,(.05) 1.67 | 3.00| 2.33| 4.67| 3.33| 6.17| 6.83 | 833 | 8.67 | 10.00
M Ny41(.10) 1.00 | 2.33| 3.00| 5.00| 3.67| 6.50| 6.50 | 8.33 | 8.67 | 10.00
M N11(.20) 1.00 | 3.67| 2.67| 5.00| 2.67| 6.83| 6.17 | 833 | 8.67 | 10.00
M N;12(.05) 1.67 | 2.67| 3.67| 3.67| 3.33| 6.50| 6.50 | 8.33 | 8.67 | 10.00
M N;2(.10) 1.00 | 3.00| 2.67| 5.00| 3.33| 6.50| 6.50 | 8.33 | 8.67 | 10.00
M N12(.20) 1.33 | 3.33| 3.00| 5.00| 2.33| 6.83| 6.17| 8.33| 8.67 | 10.00
M N3 (.05) 1.00 | 2.67| 2.33| 5.00| 4.00| 6.50 | 6.50 | 8.67 | 8.33 | 10.00
M N (.10) 1.33 | 3.33| 3.00| 5.00| 2.33| 6.83| 6.17| 8.33 | 8.67 | 10.00
M N3 (.20) 1.00 | 4.33 | 4.67| 2.67| 2.33| 6.83| 6.17 | 833 | 8.67 | 10.00
M N2y (.05) 1.67 | 3.33| 4.00| 4.67| 1.33| 6.17| 6.83 | 833 | 8.67 | 10.00
M Ny (.10) 1.33 | 3.33| 2.67| 5.00| 2.67| 6.50| 6.50 | 8.33 | 8.67 | 10.00
M N2 (.20) 1.00 | 3.67| 3.33| 4.00| 3.00| 6.83| 6.17| 8.33 | 8.67 | 10.00
TB H 2.91 ] 3.55 ] 3.88 ‘ 4.14 ] 4.42 ‘ 6.18 ‘ 6.23 ] 7.46 ‘ 7.71 ‘ 8.51 ]
TABLE 4. Scores of robustness with respect to sample size and M.

n || emed | omed | tmed | vmed | hd 1 | sdq | lmed | hd o5 | sd g5 | mean

20 1.27| 295 | 245 | 4.41|7.95|795| 6.95| 7.39| 7.34| 6.32

60 1.05 | 227 3.09| 4.77 573|555 | 691 | 839 | 843 | &8.82

200 1.82 | 255 | 586 | 4.82|4.27 559 | 7.00| 6.68 | 6.77 | 9.64

| 3 || 1.38 | 2.59 | 3.80 | 4.67 | 5.98 | 6.36 | 6.95 | 7.48 | 7.52 | 8.26 |
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TABLE 5. Scores of robustness with respect to sample size and B.

n || ecmed | omed | tmed | vmed | Imed | hdy | sd.1 | sd.gs | hd o5 | mean
20 232 | 3.14| 336 | 3.95| 3.86|6.82|6.82| 820 | 8.16| 8.36
60 232 | 3.45| 3.45| 3.68| 4.00 | 5.64 | 5.68 | 8.57 | 8.61 9.59

200 2.73| 3.36| 4.50 | 3.82| 4.36 | 6.05|6.00| 7.18 | 7.59 | 9.41

[ 5[ 245] 332 3.77] 3.82] 4.08[6.17[6.17] 7.08 ] 812] 9.12]




