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Abstract The minimum averaged mean squared error nonparametric adaptive weights use

data from m possibly different populations to infer about one population of interest. The

definition of these weights is based on the properties of the empirical distribution function.

We use the Kaplan-Meier estimate to let the weights accommodate right-censored data and

use them to define the weighted Kaplan-Meier estimate. The proposed estimate is smoother

than the usual Kaplan-Meier estimate and converges uniformly in probability to the target

distribution. Simulations show that the performances of the weighted Kaplan-Meier esti-

mate on finite samples exceed that of the usual Kaplan-Meier estimate. A case study is also

presented.

Keywords: Adaptive weights · Borrowing strength · Kaplan-Meier estimate · Nonpara-

metrics · Survival analysis · Weighted inference

1 Introduction

The relevance weighted empirical distribution function introduced by Hu & Zidek (1993),

further developed in Hu (1994), then published in Hu & Zidek (2002), is designed to estimate

a target distribution by using data from possibly different distributions whose similarity is

encoded through “relevance” weights.

The main work of Hu (1994) concerns the weighted likelihood which is linked to the rel-

evance weighted empirical distribution function. Wang (2001) as well as Wang et al. (2004)

and Wang & Zidek (2005) investigate the weighted likelihood under a specific paradigm

that we adopt in this paper: we suppose that data comes from m populations and that for

each fixed i = 1, . . . ,m, we observe Xi1, . . . ,Xini

iid∼ Fi.

Plante (2008) shows that the maximum weighted likelihood can be seen as a special

case of the Maximization Entropy Principle of Akaike (1977) where a form of weighted em-

pirical distribution function is used to estimate the unknown and unknowable distribution

F1. In the same article, the author proposes a nonparametric adaptive method to deter-

mine likelihood weights: the minimum averaged mean squared error weights (the MAMSE
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weights).

Let F̂i(x) = (1/ni)
∑ni

j=1 11(Xij ≤ x) be the empirical distribution function based on

data from Population i. Then

F̂λ(x) =
m∑

i=1

λiF̂i(x)

is a weighted empirical distribution function when λi ≥ 0 and
∑m

i=1 λi = 1.

For complete data, Plante (2008) suggests a criterion to determine weights that make

F̂λ(x) close to F̂1 but less variable. A few pre-processing steps that may set some weights to

zero are first applied, then the weights are determined by minimizing the objective function

P (λ) =
∫ [{

F̂1(x) − F̂λ(x)
}2

+ v̂ar
{
F̂λ(x)

}]
dF̂1(x), (1)

under the constraints λi ≥ 0 and
∑m

i=1 λi = 1, with

v̂ar
{
F̂λ(x)

}
=

m∑
i=1

λ2
i v̂ar

{
F̂i(x)

}
and v̂ar

{
F̂i(x)

}
=

1
ni

F̂i(x){1 − F̂i(x)}.

Plante (2009) shows that these weights make F̂λ(x) converge uniformly to F1.

In situations where measurements such as the time of death, or the time to failure, are

of interest, the exact value of the outcome may not be observed for all individuals, yielding

for instance right-censored data. In such situations, Kaplan & Meier (1958) propose a

nonparametric estimate of the survival function that takes into consideration both the

observed and the censored data.

In this paper, we use the Kaplan-Meier estimate to build a modified version of the

minimum averaged mean squared error weights that accommodates right-censored data.

These weights are used to define a weighted Kaplan-Meier estimate, proved to be uniformly

weakly consistent.

When data are available from populations that are similar, the weighted Kaplan-Meier

is a nonparametric estimate of the distribution of survival times that borrows strength from

the additional populations. Bayesian hierarchical models are designed for situations akin to

our paradigm where data comes from m different sources, but such models require paramet-

ric assumptions, including the specification of an hyper-parameter to link the populations

together. The weighted Kaplan-Meier requires no such assumptions.

Plante (2008) discusses situations where the minimum averaged mean squared error

weights are useful. This includes cases where a mixture of the additional populations is

similar to the target population. Consider for instance situations where the additional
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populations are demographic subgroups of the population of interest, or when data from

similar studies are available.

The proposed weighted Kaplan-Meier estimate is not based on a specific definition of

similarities between the populations. In particular, it does not require testing against

discrepancies in the data. The weights adjust automatically and discard data that are too

different. Better performances will occur when the distributions of the data are similar, but

the method remains consistent even if they are very different.

The Kaplan-Meier estimate has jumps only at times of death. The weighted Kaplan-

Meier estimate will typically be smoother since steps can occur at times of deaths from all

the populations. The simulations in Section 5 and the case study in Section 6 illustrate

this.

Section 2 introduces the notation used in this document by reviewing properties of

the Kaplan-Meier estimate. The minimum averaged mean squared error weights for cen-

sored data are defined in Section 3. In Section 4, the uniform convergence of the weighted

Kaplan-Meier estimate is proved – technical details of the proofs can be found in the Ap-

pendix. Section 5 presents simulation results that explore the performance of the weighted

Kaplan-Meier estimate on finite samples and illustrate the use of the bootstrap to determine

confidence intervals. Finally, Section 6 presents a case-study.

2 The Kaplan-Meier Estimate

We use the pretext of a review of the well-known Kaplan-Meier estimate to introduce the

notation that prevails throughout this document. For simplicity, we also adopt a survival

analysis terminology where the measurements of interest are the survival of individuals.

Consider a probability space (Ω,B(Ω), P ) and for Population i, let Xij be the time of

death of individual j and Vij its censoring time. The positive random variables Xij and Vij

are independent. We assume that the distributions of Xij is continuous and denote it by

Fi. For any fixed k ∈ IN, we observe (Zij , δij) for i = 1, . . . ,m and j = 1, . . . , nik, where

Zij = min(Xij , Vij) and δij = 11(Vij ≥ Xij). The index k is used to express the asymptotic

results of Section 4. It allows keeping track of the m sample sizes at once: we assume that

the sample sizes are non-decreasing with k and that n1k → ∞ as k → ∞.

Let Hi(t) = pr(Zi1 ≤ t) and let τHi = sup{t : Hi(t) < 1} be the largest value that Zij
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can attain. The possibility that τHi = ∞ is not ruled out although it is unlikely to occur in

practice. In addition, let H∗
i (t) = pr(Zi1 ≤ t, δi1 = 1) be the distribution of observed death

times for Population i. We adopt the usual notation

Nik(s) =
nik∑
j=1

11(Zij ≤ s, δij = 1) , dNik(s) = Nik(s) − Nik(s−),

Yik(s) =
nik∑
j=1

11(Zij ≥ s) , dYik(s) = Yik(s) − Yik(s+).

For Population i, the Kaplan-Meier estimate of the probability of dying at time t or earlier

is written (see e.g. Kaplan & Meier 1958)

F̂ik(t) = 1 −
∏

0≤s≤t

{
1 − dNik(s)

Yik(s)

}
.

The Kaplan-Meier estimate is an increasing step function with jumps at each observed

times of death. The number of deaths observed in Population 1 is Nk = N1k(τH1), hence

tkNk
represents the largest observed time of death. For k ∈ IN, let tk1 < · · · < tkNk

be the

ordered times of these deaths, distinct by the continuity of F1.

Using the convention that tk0 = 0, we have Jkj = F̂1k(tkj) − F̂1k(tk(j−1)) for j ∈

{1, . . . ,Nk}. Then
∑Nk

j=1 Jkj ≤ 1. and Jk1 ≤ Jk2 ≤ · · · ≤ JkNk
.

We will consider the Kaplan-Meier estimate on a bounded interval [0, U ] with U < τH1 .

It is well known that supt≤U |F̂ik(t)−Fi(t)| → 0 almost surely as nik → ∞, see e.g. Winter

et al. (1978) or Földes & Rejtö (1981).

Efron (1967) and Breslow & Crowley (1974) assume that the distribution of censoring

time is continuous and show that F̂ik(t) is approximately normal with mean Fi(t) and a

variance that can be estimated using Greenwood’s formula

v̂ar{F̂ik(t)} ≈ ṽar{F̂ik(t)} = {1 − F̂ik(t)}2
∑

0≤s≤t

dNik(s)
Yik(s)Yik(s+)

, (2)

an expression that becomes less reliable as t approaches τHi .

Defining minimum averaged mean squared error weights based on the Kaplan-Meier

estimate involves using an estimate of its variance. Equation (2) will be used for that

purpose even though the continuity of the distribution of censoring time is not assumed.
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3 Minimum Averaged Mean Squared Error Weights for

Right-Censored Data

We extend the idea of Plante (2008) to censored data by replacing the empirical distribution

functions in (1) with the corresponding Kaplan-Meier estimates.

We assume that we can specify an upper bound U < τH1 and limit our study of the

lifetime distribution to the interval [0, T ] where T < U is such that H∗
1 (T ) < H∗

1 (U),

meaning that there is a non-null probability that a death is observed in the interval (T,U ].

This will be the case whenever the probability of death, observed or not, is non-null in that

interval.

A few pre-processing steps are first applied. For a fixed k and i = 2, . . . ,m, let mik =

min{j≤nik:δij=1} Zij and Mik = max{j≤nik:δij=1} Zij be the smallest and largest times of

death observed in Population i. The weight allocated to the sample from Population i is

set to 0 if one of the following two conditions fails:

1. U ∈ [mik,Mik], i.e. at least one observed death from Population i is in the interval

[0, U ] and at least one observed death occurs after U ;

2.
∑

{j≤n1k:δ1j=1} 11{X1j ∈ [mik,min(Mik, U)]} ≥ 1, i.e. at least one observed death from

Population 1 which occurred in [0, U ] falls within the range of the observed times of

death in Population i.

Condition 1 ensures that Formula (2) is well defined on [0, U ] and not null everywhere on

that interval. Condition 2 means that the same formula will be strictly positive for at least

one of the times of death from Population 1 in [0, U ], ensuring the unicity of the minimum

averaged mean squared error weights and the convergence of the algorithm used to calculate

them. See Section 4.3 of Plante (2007) for more detailed explanations. The pre-processing

requirements appear technical, but they avoid using the Kaplan-Meier estimate in situations

where it becomes unreliable.

Define the objective function

Pk(λ) =
∫ U

0

⎡⎣{F̂1k(t) −
m∑

i=1

λiF̂ik(t)

}2

+
m∑

i=1

λ2
i ṽar

{
F̂ik(t)

}⎤⎦ dF̂1k(t), (3)

a special case of Equation (1) where v̂ar{F̂ik(t)} is estimated by ṽar{F̂ik(t)} from Equa-

tion (2) and F̂ik(t) now represent Kaplan-Meier estimates.
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Note that none of the pre-processing steps can remove Population 1 since it is the

population of interest. In cases where M1k = tkNk
< U , the expression for ṽar{F̂1k(tkNk

)}

involves a division by 0 since Yik(t+kNk
) = 0. In that case, we substitute the ill-defined term

by its value just before tkNk
, the largest observed time of death. This adjustment will affect

at most one term of the integral Pk(λ).

The weights are chosen to minimize Pk(λ) subject to λ ≥ 0 and
∑m

i=1 λi = 1. We call

the solution of this optimization problem the survival minimum averaged mean squared

error weights. These optimal weights, denoted μk = [μ1k, . . . , μmk]T, are random variables

defined on Ω since they depend on the data. For values of t in the interval [0, T ], the

weighted Kaplan-Meier estimate of the lifetime’s cumulative distribution function is given

by

Ĝk(t) =
m∑

i=1

μikF̂ik(t). (4)

Whether a sample is rejected in the pre-processing or not may vary with k, but it

does not affect the distribution of probabilities calculated in expressions such as (6) since

Population 1 is never excluded from the optimization problem. Moreover, pre-processing

does not change the fact that λ = [1, 0, . . . , 0]T is a suboptimal choice of weights.

For fixed k, let us write

V (x) =

⎡⎢⎢⎢⎢⎣
ṽar{F̂2k(x)} 0

. . .

0 ṽar{F̂mk(x)}

⎤⎥⎥⎥⎥⎦ , F(x) =

⎡⎢⎢⎢⎢⎣
F̂1k(x) − F̂2k(x)

...

F̂1k(x) − F̂mk(x)

⎤⎥⎥⎥⎥⎦
and λ̃ = [λ2, . . . , λm]T. Then, following Plante (2008),

Pk(λ) = λ̃TĀλ̃ − 2λ̃T�1b̄ + b̄ (5)

where �1 is a vector of ones,

Ā =
∫ [

F(x)F(x)T + V (x) +�1�1Tṽar
{
F̂1k(x)

}]
dF̂1k(x) , b̄ =

∫
ṽar

{
F̂1k(x)

}
dF̂1k(x).

The minimum of Pk(λ) without the constraints on λ would be the solution to the equation

Āλ̃ = b̄�1. To enforce the constraints, the following algorithm is applied

1. Solve the equation Āλ̃ = b̄�1;

2. if all the weights obtained are nonnegative, stop. Otherwise set the negative weights

to 0, ignore the corresponding samples and repeat from Step 1 with the reduced
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system. The weight allocated to Population 1 from Step 1 cannot be negative (see

Lemma 4 of Plante (2008)). If no other samples are left, then λ̃ = 0 and λ1 = 1.

The algorithm above works because Pk(λ) is quadratic and positive definite. These facts are

proved rigorously in Section 2.4 and 4.3 of Plante (2007) who uses the sufficient Kuhn-Tucker

conditions. The proof is similar to that found in Plante (2008) for the non-censored case.

The pre-processing steps are important to insure the positive definiteness of Ā which also

guarantees that the algorithm above converges and that for any given samples, Equation 5

has a unique solution.

4 Asymptotic Properties of the Weighted Kaplan-Meier Es-

timate

We prove that Ĝk(t) converges uniformly in probability to F1(t). The details of the proofs

are deferred to the Appendix. Remember that we assumed that the distribution of the

times of death is continuous, but the distribution of the times of censoring need not be.

Recall also that n1k → ∞ as k → ∞, but that the other nik may either be bounded or go

to ∞ at any rate.

The results of this section hold for any adaptive criterion ensuring that the following

assumption is respected.

Assumption 1
∫ U

0

{
F̂1k(t) − Ĝk(t)

}2
dF̂1k(t)

P→ 0 as k → ∞.

Note that this assumption is indeed respected by the proposed adaptive weights.

Theorem 1 The proposed survival minimum averages mean squared error weights respect

Assumption 1.

Theorem 2 Let 0 < T < U < τH1 with H∗
1 (T ) < H∗

1 (U), then supt≤T

∣∣∣Ĝk(t) − F1(t)
∣∣∣ P→ 0

as k → ∞.

The weighted Kaplan-Meier estimate converges uniformly in probability to the lifetime

distribution of Population 1 in the interval [0, T ].

Knowing the asymptotic distribution of the weighted Kaplan-Meier estimate would be

handy for the determination of confidence bands, but such a result is not even known in the
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simpler case of uncensored data. Plante (2009) describes how the minimum averaged mean

squared error weights may remain random even for infinitely large sample sizes, compli-

cating asymptotic derivations. A similar behavior is expected for the survival case. As an

alternative, resampling methods such as the bootstrap may be used to determine confidence

intervals for the weighted Kaplan-Meier estimate. An example is provided in Section 5.4.

5 Simulations

This section presents the results of simulations performed to evaluate the finite-sample

performance of the weighted Kaplan-Meier estimate relative to that of the usual Kaplan-

Meier estimate.

Software to calculate the minimum mean squared error weights and the weighted Kaplan-

Meier estimate were developed in R and are available as a library (called MAMSE) on the

Comprehensive R Archive Network.

After calculating both F̂μ(t) and the usual Kaplan-Meier estimate, F̂1(t), we evaluate

their relative performance by comparing Aμ =
∫ T
0 |F̂μ(t) − F1(t)|dt and A1 =

∫ T
0 |F̂1(t) −

F1(t)|dt.

At the end of this section, we also explore the reliability and effectiveness of bootstrap

pointwise confidence intervals for the weighted Kaplan-Meier estimate. Since the asymptotic

distribution of F̂μ(t) is not known yet, practitioners will have to rely on such resampling

methods to take advantage of the weighted Kaplan-Meier estimate.

Simulations use either 10000 or 20000 repetitions. Unless otherwise stated, these num-

bers are large enough to make the standard deviation of the simulation error smaller than

the last digit shown in the tables. Symbols with a bar, e.g. Ā1 or μ̄1, correspond to an

average of the corresponding statistic over the simulated samples.

5.1 Gamma Model

Let us first consider the gamma distribution. Equal samples of size n ∈ {10, 25, 100, 1000}

are drawn from four populations with common scale parameter (β = 0.5), but different shape

parameters (αi), yielding expectations αi/β. In a first scenario, the shape parameters are

0.5, 0.7, 0.9 and 0.3 respectively, in a second scenario, they are 0.75, 0.5, 1 and 1.25.

The Kaplan-Meier estimate based on Population 1 alone and its weighted counterpart
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are computed on 20000 repetitions. The results are summarized in Table 2.

Note that U = 3/2, T = 1 and that the times of censoring are simulated as independent

Uniforms on [0, 3], yielding censoring rates of 0.29, 0.39, 0.48 and 0.18 respectively under

Scenario 1 and of 0.41, 0.29, 0.52 and 0.61 under Scenario 2.

Table 1: Relative performance of the weighted Kaplan-Meier estimate as measured by

100Ā1/Āμ as well as the average weights. Equal samples of size n are drawn from four

Gamma populations under two different scenarios. Note that U = 3/2, T = 1 and that

each entry is based on 20000 repetitions.

Scenario 1 Scenario 2

100× Ā1/Āμ μ̄1 μ̄2 μ̄3 μ̄4 Ā1/Āμ μ̄1 μ̄2 μ̄3 μ̄4

n =10 110 79 8 7 6 115 72 9 10 8

25 111 67 13 8 12 116 59 17 14 10

100 112 53 18 8 21 113 47 25 17 10

1000 104 70 18 0 12 102 62 16 21 1

The weighted Kaplan-Meier estimate is better for all cases tried since Ā1/Āμ ≥ 1.

Under Scenario 1, the weights allocated to Populations 2 and 4 remain relatively high even

for large sample sizes, meaning that a mixture of Populations 2 and 4 must be quite similar

to Population 1. The weak consistency of the weighted Kaplan-Meier estimate however

implies that the weight will eventually shift entirely to Population 1 in this case.

A similar behavior is observed under Scenario 2 where Population 2 and 3 share a fairly

large proportion of the weight even for large sample sizes.

5.2 Gamma and Weibull Distributions

We now consider distributions of different shapes, but similar locations. Two scenarios

are simulated, each with four populations: two Gammas and two Weibulls. The scale

parameters (β) of the distributions are chosen as functions of the shape parameters (α) to

give them an expected value of 1. For the Gamma, this means β = α, but for the Weibull,

β = {Γ(1+α)}−1. In the first scenario, the shape parameters of the Gamma are 0.9 and 1.1

respectively, those of the two Weibulls are 2 and 1.1. A second scenario is also considered
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where the shape parameters are 0.5, 2, 2 and 5 respectively for the two Gammas and the

two Weibulls. Population 1 is of interest: the Gamma distribution with α = 0.9 under

Scenario 1 and that with α = 0.5 under Scenario 2. Each scenario is repeated 10000 times.

Censoring times are simulated as follow. Let X be a random variable drawn from

the simulated distribution and X1, ...,Xr be r additional random variables with the same

distribution. The censoring time is defined as V = max(X1, . . . ,Xr), yielding a censoring

rate of P (V < X) = 1/(r + 1). We set r = 3 for a censoring rate of 25%.

Table 2: Relative performance of the weighted Kaplan-Meier estimate as measured by

100Ā1/Āμ as well as the average weights. Equal samples of size n are drawn from two

Gamma populations and two Weibull populations under two different scenarios. Note that

U = 5/4, T = 1 and that each entry is based on 10000 repetitions.

Scenario 1 Scenario 2

100× Ā1/Āμ μ̄1 μ̄2 μ̄3 μ̄4 Ā1/Āμ μ̄1 μ̄2 μ̄3 μ̄4

10 122 65 13 8 14 102 82 10 7 1

25 120 59 18 6 17 98 86 10 4 0

100 114 63 19 2 16 98 96 4 0 0

1000 100 85 11 0 4 100 100 0 0 0

Under both scenarios, Population 2 whose shape is closer to Population 1 tends to get

more weight than either of the Weibull populations. Under Scenario 1, other populations

contribute to the inference with an average weight of up to 40%. Under Scenario 2 however,

the discrepancies in shapes are larger and Populations 2, 3 and 4 quickly get dismissed as

the sample sizes increase. The performance is not improved by the weighted method under

that scenario and small losses are sometimes observed.

Estimating the weights from the data has some cost that can be recovered when the

distributions are sufficiently similar. When the distributions are too different, that cost

may not be recovered and a small loss of performance is observed. The discrepancies in the

shapes did not however cause the weighted method to fail under the simulated scenarios.
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5.3 Survival in the United States of America

We use the decennial life tables published by the National Center for Health Statistics in

1997. From this publication, we obtain the distributions of lifetime for four subgroups of

the population in the United States of America: white males, white females, males other

than white, females other than white. The life tables have a resolution of one year from

birth to the age of 109 years. We draw the day and time of death uniformly during the

year.

We use the same strategy as in Section 5.2 to simulate censoring times with r = 4

yielding a censoring rate of 20%.

Inferential interest concerns the distribution of white males survival based on equal

samples drawn from the four demographic groups mentioned above. For different val-

ues of the upper bound U ∈ {60, 70, 80, 90, 100}, we generate samples of equal size n ∈

{10, 25, 100, 1000} from each of the four populations. Each scenario is repeated 20000 times.

Table 3 shows the ratio 100Ā1/Āμ for different choices of n, U and T . The weighted

Kaplan-Meier estimate performs better under all scenarios considered although this advan-

tage seems more modest for the largest sample size (n = 1000).

Table 3: Relative performance of the weighted Kaplan-Meier estimate as measured by

100Ā1/Āμ for different values of U and T . Samples of equal size n are drawn from each of

four subpopulations, then used to estimate the distribution of the lifetimje of a white male

living in the United States of America. Each scenario is repeated 20000 times.

T = 55 T = U − 5

U = 60 70 80 90 100 U = 60 70 80 90 100

n = 10 114 135 142 118 100 114 132 137 116 100

25 137 148 149 128 101 137 141 137 122 101

100 135 143 140 128 102 135 134 128 118 101

1000 121 120 108 105 103 121 115 103 101 101

Dissimilarities between populations are considered on the interval [0, U ], hence the lack

of a clear trend as U varies. For U = 100, the samples from other populations are frequently

dismissed at pre-processing, thus ignored, especially for small sample sizes. Indeed, 25% of
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the white females reach the age of 90, but less than 3% survive long enough to celebrate

their 100th birthday. An abrupt change in the average weights is observed in Figure 1 and

probably explains the drop in performance from U = 90 to U = 100.

Figure 1: Average weights for four samples of size n drawn from demographic sub-

populations of the United States of America. The area of the cells are proportional to

the average weight allocated to each population. The numbers correspond to 100μ̄1 and are

averaged over 20000 repetitions. Different values of U are considered.

Unless a mixture of the distributions of Populations 2, 3 and 4 is identical to that of

the distribution of Population 1, Theorem 2 implies that the weight allocated to Popu-

lation 1 converges to 1 as the sample sizes increase. This tendency is not observed for

U ∈ {60, 70}, meaning that a mixture of the other 3 distributions must be very similar to

that of Population 1 on [0, U ].

Figure 2 displays estimates of the distribution functions for a given simulated sample.

The smooth gray line shows the true distribution of the lifetime of a white male in the

United States of America, the plain black line shows the Kaplan-Meier estimate based on

a sample of size n and the dashed line corresponds to the weighted Kaplan-Meier estimate.

The numbers on each panel correspond to Āμ and Ā1 respectively with T = 75. As we may

expect from the previous tables, Āμ is typically smaller than Ā1, although exceptions arise

such as for n = 1000 on Figure 2.

A close look at Figure 2 shows an important advantage of the weighted Kaplan-Meier

estimate over the Kaplan-Meier estimate: the increased number of points where jumps may

occur yields a smoother step function.

Table 4 shows the performances of the weighted Kaplan-Meier in estimating F1(55) =

0.11976 or F−1
1 (0.10) = 52.081 as measured by the ratio of their mean squared errors. Note
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Figure 2: Typical examples of the weighted Kaplan-Meier estimate (dashed line) and of the

usual Kaplan-Meier estimate (plain black line) for different sample sizes. Note that U = 80

and T = 75. The true distribution is depicted by a smooth gray line.

that we write q̂1 = F̂−1
1 (0.10) and q̂μ = F̂−1

μ (0.10).

The estimates obtained from the weighted method feature a smaller mean squared error

in almost all cases. Moreover, the magnitude of the gains seems to outweigh that of the

occasional losses, especially when we consider that such losses occur when n is large, not

the cases where our method would be most useful.

Table 5 explores the effect of different censoring probabilities p ∈ {1/3, 1/4, 1/5, 1/6}

while we set U = 80 and T = 75 (we use diffenrent values of r to simulate the censoring

times). The proportion of censored data has little or no effect on the relative performance

of the Kaplan-Meier estimate compared to its weighted equivalent. A closer look at the

raw data shows that the precision of both estimates are affected by a larger p, but the

magnitude of this effect appears to be the same.

Overall, the weighted Kaplan-Meier estimate seems to outperform the usual Kaplan-

Meier estimate in almost all the cases explored.
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Table 4: Relative performance of the weighted Kaplan-Meier estimate compared to the

usual Kaplan-Meier estimate for estimating F1(55) and F−1
1 (0.10) as measured by 100

MSE{F̂1(55)}/MSE{F̂μ(55)} and 100 MSE(q̂1)/MSE(q̂μ) respectively. Samples of equal

size n are drawn from four subgroups of the American population. Different choices of U

are considered; each scenario is repeated 20000 times.

100 MSE{F̂1(55)}/MSE{F̂μ(55)} 100 MSE(q̂1)/MSE(q̂μ)

U = 60 70 80 90 100 60 70 80 90 100

n = 10 117 151 172 134 101 120 140 161 141 100

25 137 159 170 149 102 153 173 172 133 101

100 125 142 142 134 104 124 145 139 126 102

1000 110 107 84 86 103 119 113 86 86 106

5.4 Bootstrap Confidence Intervals

In this section, we use the bootstrap to determine pointwise confidence intervals for the

weighted Kaplan-Meier estimate. Davison & Hinkley (1997) discuss techniques to perform

bootstrap in the presence of right-censorship, but we use one of the approaches described

by Efron (1981).

For a given sample, we calculate the Kaplan-Meier estimate of the survival times as well

as the Kaplan-Meier estimate of the censored time (time of censoring becomes the event of

interest and we see death as the event that censors it). We simulate the bootstrap sample

by drawing from these two distributions. Exactly one of the two Kaplan-Meier curves will

not reach 1, e.g. the estimate of the lifetime’s cumulative distribution function when the

last datum is censored. The remaining probability mass can be allocated to ∞ without

complications: taking the minimum between the times of death and censoring will not

allow ∞ into the data.

The procedure above is repeated separately in each of the m populations to produce

bootstrap samples from which the weighted Kaplan-Meier estimate can be determined.

We generate samples of size 100 from the four subgroups of the American population

described in Section 5.3, fix U = 80 and r = 4 for a censoring rate of 20%. The bootstrap is

used to produce 90% pointwise confidence intervals for the weighted Kaplan-Meier estimate
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Table 5: Average weights for different rates of censoring p and different sample size n

as well as the relative performance of the weighted Kaplan-Meier estimate as measured

by 100Ā1/Āμ. Samples of equal size n are drawn from four subgroups of the American

population. Figures are averaged over 20000 repetitions and the values U = 80 and T = 75

are used.

100μ̄1 100 Ā1/Āμ

p = 1
3

1
4

1
5

1
6

1
3

1
4

1
5

1
6

n = 10 57 54 53 52 133 135 137 136

25 50 48 48 47 136 137 137 138

100 47 47 47 47 127 127 128 126

1000 68 69 69 69 102 103 103 102

and likewise for the Kaplan-Meier estimate based on white males alone. For completeness,

confidence intervals based on Greenwood’s formula are also calculated.

We simulate 10000 samples on which we calculate both estimates and their pointwise

confidence intervals. The average length of the confidence interval with respect to time and

the estimated coverage probabilities are displayed in Figure 3.

Using more samples decreases the variance of the weighted Kaplan-Meier estimate com-

pared to the Kaplan-Meier estimate as shown by the uniformly shorter confidence intervals

of the former.

All three versions of confidence intervals flirt with the 90% confidence level, except

for values close to zero. The estimated coverage of the weighted Kaplan-Meier estimate

is much smoother than that of the Kaplan-Meier estimate, whether we use Greenwood’s

formula or the bootstrap. The big jumps in coverage tend to occur around time points that

solve F (t) = k/100 where k is an integer. The smoothness of the weighted Kaplan-Meier

estimate comes from the larger number of data points that it uses, but also from the fact

that the corresponding jumps are weighted, allowing a greater variety of sizes. The result

is striking in Figure 3.

Although the convergence of resampling methods for the weighted Kaplan-Meier esti-

mate is not proved formally, the example above indicates that such methods may behave
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Figure 3: Average length of the confidence intervals (left panel) and coverage probability

(right panel) as a function of time. All lines are obtained from averages over 10000 simulated

samples.

well. Practitioners who have hesitations with using the bootstrap could test it in small

simulations where the pseudo-data is akin to that expected from their study.

When data are available from different sources that are likely to feature a distribu-

tion similar to that of the population of interest, it seems preferable to incorporate that

information rather than dismissing it.

6 Case Study: Survival After Kidney Transplant

We illustrate the use of the weighted Kaplan-Meier estimate on a real dataset taken from

Klein & Moeschberger (1997). The time of death (in days) of 863 kidney transplant patients

are given for each of four demographic groups: 432 white males, 280 white females, 92

black males and 59 black females. The number of observed values are 73, 39, 14 and 14

respectively for the four groups, the rest are right-censored. The Kaplan-Meier estimates

of the distribution of survival for each of the groups appear in Figure 4.

We address the problem of estimating the distribution of survival in the two smallest

groups: black males and black females. For both of these problems, we will compare the

weighted Kaplan-Meier to the usual Kaplan-Meier estimate.

Figure 4 shows that the distribution of the survival of black males is somewhere in the

middle of that of the white patients, but the distribution of black female seems different,
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Figure 4: Kaplan-Meier estimate of the distribution of survival for kidney transplant pa-

tients in four demographic groups.

featuring the highest risk of all groups. Using the weighted Kaplan-Meier in that case will

give an example of what happens when the distributions are not as similar as we wished.

The longest follow-up time for this study is 3434 days (over 9.4 years). Values of T

and U must thus be smaller than that figure. Let us suppose that we are interested in the

distribution of survival during the five first years. We can set T = 1825 (5 years) and choose

U just slightly greater, say U = 2000.

Keeping a gap between U and T is necessary for the asymptotic convergence of the

method. It is however not desirable to choose a very large U because the weights compare

the Kaplan-Meier functions on the interval [0, U ]. Therefore, discrepancies between the

populations in the interval [T,U ] could play a role in discarding samples containing useful

information on [0, T ], the interval of interest.

Another way to look at this is to keep in mind that the convergence of the weighted

Kaplan-Meier estimate is not guaranteed at U . Choosing T very close to U will thus mean

a slower convergence at T .

Let F̂BM be the Kaplan-Meier estimate based on the data from the black males alone

and F̂BF that of the black females. We define F̂WM and F̂WF similarly.

The weighted Kaplan-Meier estimate of the distribution of of a black male survival

after a kidney transplant corresponds to 0.151F̂BM + 0.375F̂WM + 0.440F̂WF + 0.034F̂BF .

For the black females, we get 0.476F̂BF + 0.524F̂WM . These functions are displayed in

Figure 5 with 90% pointwise confidence intervals determined using 10000 bootstrap samples.
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For reference, the corresponding Kaplan-Meier estimate (F̂BM and F̂BF ) are drawn as a

thick gray lines along with 90% pointwise confidence intervals. All confidence intervals are

obtained using the bootstrap approach presented in Section 5.4.

Figure 5: Weighted Kaplan-Meier estimate of the distribution of survival after a kidney

transplant for black males (left panel) and black females (right panel) based on data from

four demographic groups. The thick gray lines correspond to the usual Kaplan-Meier esti-

mate. The pointwise confidence intervals are obtained with bootstrap.

The minimum averaged mean squared error weights attempt to reduce the variance

of the estimate, while limiting the bias it could incur. Therefore, large samples tend to

be given important weights, especially when their distributions are similar to the target

distribution. This explains why there is so much weight given to the white populations in

the estimation of the weighted Kaplan-Meier for the black males. By comparison, the small

sample of black females that features a seemingly different distribution provides a rather

small contribution.

The left panel of Figure 5 shows that the weighted Kaplan-Meier estimate of the dis-

tribution of black males survival is very close to F̂BM , but it is much smoother and has

narrower confidence intervals. We cannot easily verify the coverage probability of the boot-

strap intervals on a single data set, but we can suppose that the behavior observed in the

simulations of Section 5.4 would occur here too.

The Kaplan-Meier estimate of the distribution of the survival of black female patients

is the furthest away from the 3 other estimates. It is therefore not very surprising that

two populations get completely dismissed in the weighted Kaplan-Meier estimate. The
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importance of the weight allocated to the population of white males – more than half of the

total – may however seem unexpected. This can be explained by the proximity of F̂BF and

F̂WM in the first 3 years, but also by the large size of the white males sample which means

more potential for reduced variance. The right panel of Figure 5 shows that the weighted

estimate is close to the usual Kaplan-Meier despite the large weight allocated to the sample

of white males.

To better understand the behavior of the method, note that the weight allocated to the

white male sample falls to 0.349 when U = 2500 and to 0.275 when U = 3000. This reflects

the fact that when compared on these longer intervals, there is more discrepancies between

the Kaplan-Meier estimates of the white males and that of the black females.

When data is available from different similar populations, using the minimum averaged

mean squared error weights to build a weighted Kaplan-Meier estimate let us exploit that

data to obtain a smoother and typically less variable estimate. This is all done without

making parametric assumptions. The simulations of Section 5.4 showed the advantages of

the method; the case-study of this section illustrates that it can work well with real data.

7 Conclusions

Plante (2008) defines a data-based criterion to determine mixing probabilities that make F̂λ

close to F̂1, and less variable. Extending the minimum averaged mean squared error weights

to right-censored data allows to define the weighted Kaplan-Meier estimate, a nonparametric

estimate of the distribution of lifetimes that borrows strength from similar populations.

The weighted Kaplan-Meier estimate converges weakly and uniformly to the target dis-

tribution. Simulations confirmed that the addition of other samples allows to outperform

the usual Kaplan-Meier estimate for different scenarios involving finite samples. This addi-

tion also means improved smoothness and better coverage.

Determining the asymptotic distribution of the weighted Kaplan-Meier estimate would

be useful, but the data-dependence of the weights prevents us from building a proof using

the usual strategies. Meanwhile, resampling methods may be used to determine confidence

intervals or variance estimates as illustrated in the simulations of this paper.

Although almost all the simulated scenarios yield results showing improved inference,

we could not determine a specific criterion which would guarantee the superiority of the
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weighted Kaplan-Meier estimate over the usual estimate. Finding such a criterion would

constitute a neat contribution. For now, if one hesitates, simulation studies with distribu-

tions that are akin to those expected for the study could justify their choice.

Other avenues for future research include the determination of optimal weights for the

weighted Kaplan-Meier estimate and the development of the weighted partial likelihood.

With the promising results shown in this paper, we are looking forward to seeing the

weighted Kaplan-Meier estimate used successfully in different case studies or applications.
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Appendix

The mathematical proofs of the theoretical results are presented below.

Proof of Theorem 1. By the definition of the minimum averaged mean squared error

weights, [1, 0, . . . , 0]T is a suboptimal choice of weights. Following Equations (2) and (3),

we thus have

∫ U

0

{
F̂1k(t) − Ĝk(t)

}2
dF̂1k ≤ Pk{μk} ≤ Pk{[1, 0, . . . , 0]T} =

∫ U

0
ṽar

{
F̂1k(t)

}
dF̂1k(t)

≤

⎧⎨⎩ ∑
0≤s≤U

dN1k(s)
Y1k(s)Y1k(s+)

⎫⎬⎭
∫ U

0
{1 − F̂1k(t)}2 dF̂1k(t)

Now consider the term

∑
0≤s≤U

dN1k(s)
Y1k(s)Y1k(s+)

≤
∑

0≤s≤U

Y1k(s) − Y1k(s+)
Y1k(s)Y1k(s+)

≤ 1
Y1k(U)

since dN1k(s) ≤ dY1k(s) for all s and the sum in the middle term telescopes, even in the

case of concurrent censoring times. Since the Z1j ’s are independent, Y1k(U) has a Binomial
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distribution with parameters n1k and pH1 = 1 − H1(U). Let ε > 0, then

pr

⎧⎨⎩ ∑
0≤s≤U

dN1k(s)
Y1k(s)Y1k(s+)

> ε

⎫⎬⎭ ≤ pr
{

1
Y1k(U)

> ε

}
≈ Φ

[
1/ε − n1kpH1√

n1kpH1{1 − pH1}

]
→ 0 (6)

as k → ∞ since the argument inside the standard normal cumulative distribution function

Φ tends to −∞. 	

Let Jk = maxt≤U |F̂1k(t)− F̂1k(t−)| = Jkνk
, be the biggest jump of F̂1k(t) on the interval

[0, U ]. By the uniform convergence of the Kaplan-Meier estimate, Jk → 0 almost surely as

k → ∞.

Recalling that T < U is such that H∗
1 (T ) < H∗

1 (U), we let Dk = N1k(U) − N1k(T )

be the number of deaths observed in the interval (T,U ] among individuals sampled from

Population 1. Since the Z1j are independent, Dk follows a Binomial distribution with

parameters n1k and H∗
1 (U) − H∗

1 (T ).

Let 	k = N1k(T ) be the number of deaths observed in the interval [0, T ], and their

corresponding times of death tk1 < . . . < tk�k
≤ T . By convention, we set tk(�k+1) = τH1 if

no death is observed after tk�k
and we define Tk = {tk1, . . . , tk(�k+1)}.

Lemma 1 Let Ak =
{

ω ∈ Ω : max
0≤t≤T

∣∣∣F̂1k(t) − Ĝk(t)
∣∣∣ ≤ Jk + max

t∈T

∣∣∣F̂1k(t) − Ĝk(t)
∣∣∣} , then

pr(Ak) → 1 as k → ∞.

Proof of Lemma 1. Fix k ∈ IN, ω ∈ Ω, and let x0 ∈ [0, T ] be the value maximizing

|F̂1k(t) − Ĝk(t)|. That maximum exists since |F̂1k(t) − Ĝk(t)| is a bounded function being

optimized on a compact set. Three disjoint cases are considered:

Case 1: Ĝk(x0) ≤ F̂1k(x0) and Dk ≥ 1.

Let j1 = max{j ≤ 	k : tkj ≤ x0} be the index of the largest time of death from Population 1

inferior to x0. By the choice of j1, tkj1 belongs to the same step as x0 and hence F̂1k(tkj1) =

F̂1k(x0). Recalling that x0 maximizes the difference between F̂1k(t) and Ĝk(t) and that

Ĝk(t) is nondecreasing, we can write that max0≤t≤T |F̂1k(t) − Ĝk(t)| equals

F̂1k(x0) − Ĝk(x0) ≤ F̂1k(tkj1) − Ĝk(tkj1) ≤ Jk + max
t∈Tk

∣∣∣F̂1k(t) − Ĝk(t)
∣∣∣ ,

meaning that the maximum will always occur at a time of death from Population 1.

Case 2: Ĝk(x0) > F̂1k(x0) and Dk ≥ 1.
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Let j2 = min{j ≤ 	k + 1 : tkj ≥ x0} be the index of the smallest time of death greater

than x0. The condition Dk ≥ 1 ensures that tk(�k+1) exists, hence j2 is well defined. The

choice of j2 ensures that it belongs to the step of F̂1k(t) that immediately follows x0, hence

F̂1k(tk(j2−1)) = F̂1k(x0). For the same reasons as in Case 1, we write

max
0≤t≤T

|F̂1k(t) − Ĝk(t)| = Ĝk(x0) − F̂1k(x0) ≤ Ĝk(tkj2) − F̂1k(tk(j2−1))

= {F̂1k(tkj2) − F̂1k(tk(j2−1))} + Ĝk(tkj2) − F̂1k(tkj2) ≤ Jk + max
t∈Tk

∣∣∣F̂1k(t) − Ĝk(t)
∣∣∣ ,

meaning that under Case 2, the maximum will occur immediately before a jump of F̂1k(t).

Case 3: Dk = 0.

This event has probability [1 − {H∗
1 (U) − H∗

1 (T )}]n1k → 0 as k → ∞.

Combining all three cases, implies that pr(Ak) ≥ pr(Dk ≥ 1) → 1 as k → ∞. 	

Proof of Theorem 2. Let ε > 0 be such that ε < H∗
1 (U) − H∗

1 (T ). We first show that

pr
{

max
t∈Tk

∣∣∣F̂1k(t) − Ĝk(t)
∣∣∣ > ε

}
→ 0

as k → ∞.

For a large k, let xk ∈ {1, . . . , 	k +1} be the index of a time of death where the difference∣∣∣F̂1k(t) − Ĝk(t)
∣∣∣ is maximized. We define the following three events:

Ak =
{
ω ∈ Ω : F̂1k(tkxk

) − Ĝk(tkxk
) > ε

}
,

Bk =
{
ω ∈ Ω : Ĝk(tkxk

) − F̂1k(tkxk
) > ε

}
and Ck = {ω ∈ Ω : Dk ≥ εn1k + 1} .

Then,

pr
{

max
t∈Tk

∣∣∣F̂1k(t) − Ĝk(t)
∣∣∣ > ε

}
≤ pr(CC

k ) + pr(Ak ∩ Ck) + pr(Bk ∩ Ck)

and we show that each of the three probabilities on the right hand side go to zero as k → ∞.

Case 1: pr(CC
k ) → 0.

Recalling that Dk follows a Binomial distribution with n1k trials and probability of success

{H∗
1 (U) − H∗

1 (T )}, we have

pr(CC
k ) ≈ Φ

⎛⎝ 1 + n1k [ε − {H∗
1 (U) − H∗

1 (T )}]√
n1k{H∗

1 (U) − H∗
1 (T )}{1 − H∗

1 (U) + H∗
1 (T )}

⎞⎠ → 0
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as k → ∞ by the choice of a small enough ε.

Case 2: pr(Ak ∩ Ck) → 0.

Let uk = min{u :
∑xk

i=u+1 Jki ≤ ε}. This index exists when k is large enough since Jkxk
≤

Jk → 0 and
∑xk

i=1 Jki = F̂1k(tkxk
) > Ĝk(tkxk

) + ε ≥ ε.

For a large enough k, Jkxk
< ε and hence uk ≤ xk −1. For j ∈ {uk, . . . , xk −1}, we have

F̂1k(tkj) − Ĝk(tkj) ≥ F̂1k(tkxk
) − Ĝk(tkxk

) −
xk∑

i=j+1

Jki ≥ ε −
xk∑

i=j+1

Jki ≥ 0.

The last inequality holds because of the choice of uk. The function F̂1k(t) gives a mass of

Jkj to the point tkj, and hence

∫ U

0
|Ĝk(t) − F̂1k(t)|2 dF̂1k(t) ≥

xk∑
j=uk

Jkj |Ĝk(tkj) − F̂1k(tkj)|2

≥ Jkxk
ε2 +

xk−1∑
j=uk

Jkj

⎛⎝ε −
xk∑

i=j+1

Jki

⎞⎠2

→
∫ ε

0
(ε − x)2 dx =

ε3

3
(7)

since the summation corresponds to the Riemann sum for the integral
∫ ε
0 (ε−x)2 dx depicted

in Figure 6. The sum converges as k → ∞ because the width of the columns Jkj tend to

zero.

To clarify the link between the Riemann sum and the integral, consider the change of

variable p = xk − j and let

ckp =

⎧⎪⎨⎪⎩ 0 p = 0∑p
i=1 Jk(xk−i+1) p = 1, . . . , xk − uk

.

Note that ck(p+1) − ckp = Jk(xk−p) = Jkj and with respect to the variable j, ckp equals∑xk
i=j+1 Jki when p > 0. We can thus write the expression in (7) as

xk−uk−1∑
p=0

(ck(p+1) − ckp)(ε − ckp)2 →
∫ ε

0
(ε − x)2 dx =

∫ ε

0
x2 dx =

ε3

3
(8)

Consequently, there exists a k0 such that
∫ U
0 |Ĝk(t) − F̂1k(t)|2 dF̂1k(t) > ε3/6 for all

k ≥ k0, an event of probability 0 according to Theorem 1. We conclude that pr(Ak∩Ck) → 0

as k → ∞.

Case 3: pr(Bk ∩ Ck) → 0.
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Figure 6: Graphics representing the Riemann sums used in the proof of Case 2 (left panel)

and Case 3 (right panel).

Recall that the smallest possible size of a jump in F̂1j(t) is 1/n1k. Therefore, Jkj ≥ 1/n1k

and Dk ≥ εn1k + 1 implies that

∑
{j:tkj∈(T,U ],j>�k+1}

Jkj ≥
εn1k + 1

n1k
> ε.

Let vk = max{v :
∑v

j=xk+1 Jkj ≤ ε}. For a large enough k, Jk(xk+1) ≤ Jk < ε and thus

vk ≥ xk + 1. For j ∈ {xk + 1, . . . , vk},

Ĝk(tkj) − F̂1k(tkj) ≥ Ĝk(tkxk
) − F̂1k(tkxk

) −
j∑

i=xk+1

Jki ≥ ε −
j∑

i=xk+1

Jki ≥ 0,

the last inequality holding because of the choice of vk. Using again the fact that dF̂1k(t)

allocates a mass of Jkj to tkj, we find that∫ U

0
|Ĝk(t) − F̂1k(t)|2 dF̂1k(t) ≥

vk∑
j=xk

Jkj|Ĝk(tkj) − F̂1k(tkj)|2

≥
vk∑

j=xk+1

Jkj

⎛⎝ε −
j∑

i=xk+1

Jki

⎞⎠2

→
∫ ε

0
(ε − x)2 dx =

ε3

3
(9)

since the summation corresponds to the Riemann sum for the integral
∫ ε
0 (ε−x)2 dx depicted

on the right panel of Figure 6. The term Jkxk
ε2 ignored in Equation (9) corresponds to the

hashed column. The sum converges as k → ∞ because the width of the columns Jkj tend

to zero. Figure 6 uses the change of variables q = j − xk and

dkq =

⎧⎪⎨⎪⎩ 0 q = 0∑q
i=1 Jk(xk+i) q = 1, . . . , vk − xk

.
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Combining the three cases implies that maxt∈Tk
|F̂1k(t) − Ĝk(t)| converges weakly to

0. The addition of Lemma 1 and the fact that Jk → 0 imply that supt≤T |Ĝk(t) − F̂1k(t)|

converges weakly to 0. Finally, the triangular inequality yields

sup
0≤t≤T

∣∣∣Ĝk(t) − F1(t)
∣∣∣ ≤ sup

0≤t≤T

∣∣∣Ĝk(t) − F̂1k(t)
∣∣∣ + sup

0≤t≤T

∣∣∣F̂1k(t) − F1(t)
∣∣∣ .

The uniform convergence of the Kaplan-Meier estimate completes the proof. 	
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