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Abstract: Blest (2000) proposed a new nonparametric measure of correlation between two random vari- 
ables. His coefficient, which is dissymmetric in its arguments, emphasizes discrepancies observed among 
the first ranks in the orderings induced by the variables. The authors derive the limiting distribution of 
Blest's index and suggest symmetric variants whose merits as statistics for testing independence are ex- 
plored using asymptotic relative efficiency calculations and Monte Carlo simulations. 

A propos de la mesure de correlation des rangs de Blest 
Resumef: Blest (2000) a propose une nouvelle mesure non parametrique de correlation entre deux variables 
aleatoires. Son coefficient, qui est asymetrique en ses arguments, met l'accent sur les ecarts observes dans 
les premiers rangs des classements induits par les aleas. Les auteurs determinent la loi limite de l'indice de 
Blest et en suggerentdes variantes symetriques dont ils explorent les merites en tant que statistiques de tests 
d'independance au moyen de calculs d'efficacite relative asymptotique et d'une etude de Monte-Carlo. 

1. INTRODUCTION 

Although Pearson's correlation coefficient is one of the most ubiquitous concepts in the scientific 
literature, it is now widely recognized, at least among statisticians, that the degree of stochastic 
dependence between continuous random variables X and Y with joint cumulative distribution 
function H and marginals F and G is much more appropriately characterized and measured in 
terms of the joint distribution C of the pair (F(X), G(Y)), namely 

C(u,v) = P{F(X) < u, G(Y) <v}, 0 < u, v< 1 

whose marginals are uniform on the interval [0, 1]. Indeed, most modem concepts and measures 
of dependence, not to mention stochastic orderings (see, for instance, Joe 1997, Nelsen 1999 
or Drouet-Mari & Kotz 2001), are functions of the so-called "copula" C, which is uniquely 
determined on Range(F) x Range(G) in general, and hence everywhere in the special case 
where F and G are continuous, as will be assumed henceforth. 

In particular, classical nonparametric measures of dependence such as Spearman's rho 

p(X, Y) = 12 f F(x)G(y) dH(x, y) - 3 
2 

= 12 / UI dC(u, l) - 3 = 12 C (tt, v) dv du - 3 
d[O,) 1][,1]2 

and Kendall's tau 

r(X,)-=4 H(x, y) dH(x, y)- =4 C(u, v) dC(u, v) - 1 
R2 [cp),1]:' 

are superior to Pearson's coefficient in that while they vanish when the variables are indepen- 
dent, they always exist and take their extreme values 1 when X and Y are in perfect monotone 
functional dependence, that is, when either = G- 1 { F (X) } or Y = G- 1 1 - F (X) } with 
probability one. Except in special circumstances (as when F and G are members of the same 
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location-scale family, for example), these cases of complete dependence are not instances of lin- 
ear dependence. Thus when considering random data (X1, Yi),..., (Xn,I Y,) from an unknown 
distribution H whose support is [0, oo)2, for instance, the values of p and r are unconstrained, 
whereas Pearson's correlation can only span an interval [r, s] whose bounds -1 < r < s < 1 
depend on the choice of marginals F and G. When the latter are unknown, it is thus difficult to 
know what to make of an observed Pearson correlation of -0.2, say. For additional discussion 
on the advantages of rank-based measures of dependence over Pearson's traditional correlation 
coefficient, the reader may refer to the nice survey paper written by Embrechts, McNeil & Strau- 
mann (2002). 

Because copulas are margin free and ranks are maximally invariant statistics of the observa- 
tions under monotone transformations of the marginal distributions, p, r and indeed all other 
copula-based measures of dependence (for example, the index of Schweizer & Wolff 1981) 
should be estimated by functions of the ranks Ri and Sj of the Xi and the Yj. Letting F, and 
Gn stand for the empirical distribution functions of X and Y respectively, the classical estimate 
for p is 

12 i +1 
pAz 3- RiSi - 3 7 17 

i=1 

namely the Pearson correlation between the components of the pairs (F,, (Xi), G (Y)) = 

(Ri/n, Si/n), 1 < i < n. Likewise, r is traditionally estimated by the scaled difference in 
the numbers of concordant and discordant pairs, or equivalently by 

2 
rn = 2 S sign(Ri - Rj) sign(Si - Sj). 

1< i<j <n 

In comparing p,, and r, in terms of their implicit weighing of differences Ri - Si, 
Blest (2000) was led to propose an alternative measure of rank correlation that "... attaches 
more significance to the early ranking of an initially given order." Assume, for example, that 
Xi and Yi represent the running times of sprinter i = 1,..., n in two successive track-and-field 
meetings. The correlation in the pairs (Ri, Si) then gives an idea of the consistency between the 
two rankings. However, differences in the top ranks would seem to be more critical, in that they 
matter in awarding medals. As a result, Blest suggests that these discrepancies should be em- 
phasized, whereas all rank reversals are given the same importance in Spearman's or Kendall's 
coefficient. 

To be specific, Blest's index is defined by 

2n + 1 12 Ri 
n- 1 n2 - n 

_ l n + 1 
Si 

The constants are rigged so that the coefficient varies between 1 and -1 and is most extreme 
when the rankings coincide (Si = Ri) or are antithetic (Si = n + 1 - Ri). Numerical re- 
sults and calculations reported by Blest (2000) indicate that his measure can discriminate more 
easily between individual permutations than either p, or r,, while being highly correlated with 
both of them. Furthermore, partial evidence is provided which indicates that the large-sample 
distribution of v,, is normal. 

The first objective of this paper is to show that v,n is an asymptotically unbiased estimator of 
the population parameter 

v(X,y ) = 2- 12j {- F(x)}2G(y)dH(x,y) = 2- 12 / (1 - u)2vdC(u ,v) (1) 

and that V/) (I,, - v) converges in distribution to a centered normal random variable whose 
variance is specified in Section 2. While v,, may be appropriate as an index of discrepancy 
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between two rankings, it is pointed out in Section 3 that since in general v(X, Y) . v(Y, X), the 
parameter (1) estimated by v, is not a measure of concordance, in the sense of Scarsini (1984). 
The properties of a symmetrized version of vn are considered in Section 4, and the relative 
merits of this new statistic (and a natural complement thereof) for testing independence are then 
examined in Section 5 through asymptotic relative efficiency calculations and a small Monte 
Carlo simulation study. Brief concluding comments are given in Section 6 and the Appendix 
contains some technical details. 

2. LIMITING DISTRIBUTION OF BLEST'S COEFFICIENT 

Define J(t) = (1 - t)2 and K (t) = t for all 0 < i < 1, and for arbitrary integers n and 
i E {1,..., n},let J,(t) = J{i/(n + 1)} and K(t) = K{i/(n + 1)} if(i- 1)/n < t < i/n. 
The large-sample behaviour of Blest's sample measure of association is clearly the same as that 
of 

2-1 
n i_ n + 1 n+ 1 

which may be written as 

2- 12 Jn (Fn)I. (Gn ) dHn 

in terms of the empirical cumulative distribution function H, of H and its marginals F, and Gn,. 
Since the functions J and K and their derivatives are bounded on [0,1], and in view of Re- 
mark 2.1 of Ruymgaart, Shorack & van Zwet (1972), a direct application of Theorem 2.1 of 
these authors implies that n (v, - v) is asymptotically normally distributed with mean and 
variance as specified below. 

PROPOSITION 1. Under the assumption of random sampling from a continuous bivariate distri- 
bution H with underlying copula C, /Y. ( v, - v) converges weakly, as n --+ oX, to a normal 
random variable with zero mean and the same variance as 

12 (1 -u)2EV - 2 + (1 - U))E(2 V = dv (2) 

where the pair (U, V) is distributed as C. In particular, the variance of the latter expression 
equals 16/15 when UT and V are independent. 

As is the case for Spearman's rho, compact algebraic formulas for v can be found for rela- 
tively few models. In two special cases of interest, Examples 1 and 2 illustrate the explicit calcu- 
lations that can sometimes be made using a symbolic calculator such as MAPLE; see Plante (2002) 
for details. Example 3, which concerns the pervasive normal model, is somewhat more subtle. 

Example 1. Suppose that (X, Y) follows a Farlie-Gumbel-Morgenstern distribution with 
marginals F and G, namely 

Ho(x, y) = F(x)G(y) + OF(x)G(y){l - F(x)}{l - G(y)}, x, y E R, 

with parameter 0 E [-1, 1]. Then 

3 0 
(X, Y) = p (X-, Y) = -Tr (-\, ) -= 

and the variance of (2) equals 16/15 - 16 02 /63. 
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Example 2. For arbitrary a, b E [0, 1]and 0 E [-1, 1], let 

He,a,b(X, y) = F(x)G(y)[1 +{1-F F(x)a}{1-G(y)b}] 

= I{F(x)-a, G(y)l-b}C{F(x)a G(y)b}, x, y E R 

where Co(u, v) = H { F-(u), G-1(v)} is the Farlie-Gumbel-Morgenstem copula and 
Hf(u, v) = uv denotes the independence copula. By Khoudraji's device (see Genest, Ghoudi & 
Rivest 1998), He,a,b is an asymmetric extension of the Farlie-Gumbel-Morgenstem distribution, 
recently considered in a somewhat more general form by Balramov, Kotz & Bek9i (2000). For 
any pair (X, Y) distributed as H,a,b, one finds 

Va(X, Y') = 2ab(a + 5)0 
(X 

(a + 2)(a + 3)(b + 2)' 

while 
P ,,b( - 3abO 3 . 

POab(A), --= (a + 2)(b + 2) = 2)' 

Note that 

VO,a,b(X, Y) VO,a,b(1 , X) = VO,b,a(X, Y), 

unless of course a = b, in which case the copula is symmetric in its arguments. An explicit but 
long formula (not shown here) for the asymptotic variance of n (v, - v) is also available in 
this case. 

Example 3. Suppose that (X, Y) has a bivariate normal distribution and that corr (X, Y) = r e 

[-1,1]. Then 

6 
vr (X,) = pr(X,Y) = -arcsin ( 

while 
2 

Tr (X, 1) -arcsin (r). ir 

The formulas for pr (X, Y) and rr (X, Y ) are standard normal theory; see, for instance, Exer- 
cise 2.14 of Joe (1997, p. 54). Unfortunately, the variance of (2) can only be computed numeri- 
cally in this case. 

The fact that v(X, Y) = p(X, Y), as in the third example, arises whenever a copula C is 

radially symmetric, that is, when its associated survival function C( u, v) = 1 - u - l + C(u, v) 
satisfies the condition 

C(u, T) = C(1-u, 1- v), 0 < ? , v < 1. (3) 

Indeed, a simple calculation shows that in general, one has 

v(X, Y) = p(X,Y) - 6E{ET2l - (1 - T)-(1- V)} 

with (U, V ) distributed as C, the underlying copula of the pair (X, Y). Clearly, the second sum- 
mand vanishes when C is radially symmetric, since condition (3) implies that the pairs (U, 1 ) 
and (1 - ;U, 1 - V) have the same distribution. 

Additional properties of vl(X, Y) are described next. 
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3. PROPERTIES OF BLEST'S INDEX 

According to Scarsini (1984), the following are fundamental properties that any measure K of 
concordance should satisfy: 

(a) K is defined for every pair (X, Y) of continuous random variables. 

(b) -1 < (X,Y) <_ 1, t(X,X) = 1, and t(X, -X) =-1. 

(c) K(X, Y) = K(Y', X). 

(d) If X and Y are independent, then Kc(X, Y) = 0. 

(e) K(-X, Y) = (X,,- Y) = -K(X, Y). 

(f) If (X, Y) -- (X*, Y*) in the positive quadrant dependence ordering, then K(X, Y) < 

c(x*, Y*). 

(g) If (.1, Y1), (X2,Y), ... is a sequence of continuous random vectors that converges 
weakly to a pair (X, Y), then t (X,, Y ) - t (XN, Y) as P -+ oo. 

It is well known that both p and r meet all these conditions, and it is easy to check that the 
index v defined in (1) has properties (a), (b), (d), (f), and (g). To show the latter two, it is actually 
more convenient to use the alternative representation 

v(X, Y) = -2 + 24 (1 - i)C(u, Z) du d, 
[o,1]2 

which follows immediately from the general identity 

J[[ IK(u, v) dC'(u, v) - J I(u, tv) du dv = / {C(un, v) - uv} d l(u, v) (4) 
^[o,i]2 ^[o1,]2 ?11] 

shown by Quesada-Molina (1992) to be valid for all right-continuous and quasi-monotone func- 
tions K: [0, 1]2 -+ R. The appropriate choice here is K(u, v) = (1 - u)2v, while taking 
K ( u, v) = u v yields the standard form of Hoeffding's identity. 

As was already pointed out in Example 2, however, Blest's measure does not satisfy condi- 
tion (c). The same example shows that property (e) is not verified either. In fact, if (X, Y) has 
copula C, then C*(u, i) = v - C( - i, v) is the copula associated with the pair (-. , Y ), and 
hence 

v (-X, Y) (X, ) - 2p(XN ), ) (5) 

so that v,(-X, Y}) 7 -v(X, Y) except in the special case where v(X, Y) = p(X, Y), as when 
C is radially symmetric, for instance. Note, however, that v(X, -Y) - = (X, Y) by a similar 
argument involving the copula C** (u, v) -= - C'(u, 1- i) of the pair (X, -Y). 

A second illustration of the failure of condition (e) for Blest's index is provided below. 

Example 4. Suppose that X is uniform on the interval [0, 1] and that either 

_ { O-X ifO<X<0, (6) 

IN X if < X < 1. 

or 

N if 0<X< 1-0, 

2 2-0 -X if I - < X 1. 
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for some constant 0 < 0 < 1. The joint distribution of the pair (X, Y) is then a "shuffle of min" 
copula in the sense of Mikusiniski, Sherwood & Taylor (1992), and the probability mass of this 
singular distribution is spread uniformly on two line segments depending on 0, as illustrated in 
Figure 1. 

When (X, Y) is distributed as (6), one finds v (X, Y) = 1 - 403 + 204, while if (X, Y) is 
distributed as (7), one gets vo (X, Y) = 1 - 204. 

V1 ji v i 

1-0 - 

0 

0 1-- 0 
0 0 1 u 0 1-0 1 u 

FIGURE 1: Support of the "shuffle of min" copulas (6) and (7) discussed in Example 4. 

Had Blest's coefficient met condition (e) above, the two expressions would have been equal, 
since the two supports displayed in Figure 1 are equivalent up to a rotation of 180 degrees about 
the point (1/2, 1/2), that is, a reflection through the line u = 1/2 followed by another reflection 
through the line v = 1/2. 

4. A SYMMETRIZED VERSION OF BLEST'S MEASURE OF ASSOCIATION 

In the light of Example 4, Scarsini's axiom (e) is clearly incompatible with the notion that a 
nonparametric measure of dependence K could emphasize differences in early ranks. Indeed, if 
(U, V) and (U*, I'*) follow distributions (6) and (7) with the same parameter, say 0 < 1/2, one 
would then expect to have t^(U, V) < n(U*, V*), since it is plain from Figure 1 that reversals 
occur in small ranks under (6), while they occur in large ranks under (7). Should property (e) 
hold true, however, it would then follow that 

v( T) < K(U* vr*) = - -V*), 
but this is impossible since tK(-U*, -V1*) = K( - U*, 1 - V* ) = s(U, V) because these three 
pairs of variables have the same underlying copula. 

By contrast, it is relatively easy to adapt Blest's suggestion in order to meet Scarsini's sym- 
metry requirement (c) in addition to conditions (a), (b), (d), (f) and (g). Specifically, let 

2n+1 12 E ( S \\ 
~, = 

i- o 2. [1 
- --- Ri 

n- - 1 n2-n - n + 1/ 

and consider the empirical rank coefficient 

- l _ v+ , +i', _ nR + 5 
2 n - 1 + 

3 - () n ZRiS4 ( n 18) 

and its theoretical counterpart 

(X I Y) r= v(Y) - 4 + 6 /1o uv(4 - u - v) dC(u, ), 2 0[,1]2 
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whose alternative representation 

((X, Y) = -2 + 12 / (2 - u - v)C(u, v) du dv 
[,1]2 

derives from an application of identity (4). Because of an obvious connection between English 
history and the concatenation of their names, the authors got in the habit of refetring jokingly to 
these quantities as the (empirical and theoretical) "Plantagenet" coefficients. Nevertheless, they 
believe (,n and < would be more appropriately called symmetrized versions of Blest's index. 

As explained in Section 4 of Blest (2000), E(v,) = E(in ) = 0 under the null hypothesis of 
independence, and hence E(~, ) = 0 as well. Under Ho, it is also a simple matter to prove (see 
Appendix for details) that 

31n2 + 60n + 26 
30(n + 1)2(n- 1) 

and that cov(p, (n) = var(p,n) = 1/(n- 1), so that 

orr(p/c 30(71 + 1)2 31 
corr(p,n n, I) 31n2 + 60n + 26 093 

while corr(p,,v,.) - V/15/16 0.9682. 

Although it is not generally true that ~n is an unbiased estimator of ~ under other distribu- 
tional hypotheses between X and Y, it is asymptotically unbiased, as implied by the following 
result. 

PROPOSITION 2. Under the assumption of random sampling from a continuous bivariate dis- 
tribution H with underlying copula C7, v/ (, - <) converges weakly, as n -+ oc, to a normal 
random variable with zero mean and the same variance as 

6 UTV(4 - ,T) + {2(2- u)E(V l UI = u) - E(2 1 U = u)} du 

+ / {2(2 -, )E(l | = ) - E(lr2 | = v) } dv , 

where the pair (U, V ) is distributed as C. In particular, the variance of the latter expression 
equals 31/30 when U[ and V are independent. 

Proof. The asymptotic behaviour of (, is obviously the same as that of 

6 , Ri Si R. Si \ 
n ? Z n+l I + n+1 + 

which may be written alternatively as 

-4 u 4 - u - u-v) dC',, (u, v) 
[o, 1]2 

in terms of the rescaled empirical copula function, as defined by Genest, Ghoudi & Rivest (1995). 
The conclusion is then an immediate consequence of their Proposition A 1 when J(u, v) = 
u.v(4 -u - v), a = 1/4 and l = p = q = 2, say, are chosen to satisfy conditions (i) and (ii) of 
their result. 
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Proceeding as above but with J(u, v) = auv + buv(4 - u - v) with arbitrary reals a and b 
actually shows that any linear combination of mn? (pn -p) and }vn (en -) is normally distributed 
with zero mean and the same variance as 

6 UV{2a + b(4- - V)} 

f1 
+ ] [2{a + b(2-u)}E(V I U =- u)-bE(V2 I U =v )] du (9) 

fu 

+ j [2{a + b(2 - v)}E(U I V = v) -bE(U2 V = v)] dv . 

Consequently, the joint distribution of /n (pn - p) and /nit (n - f) must be asymptotically 
normal with zero mean and a covariance matrix whose diagonal entries correspond to the choices 
(a, b) = (1,0) and (0, 1). The limiting covariance between these two quantities can also be 
derived from these large-sample variances and that of the linear combination corresponding to 
a = 2 and b = -1, for instance. These observations are formally gathered in the following 
proposition. 

PROPOSITION 3. Under the assumption of random sampling from a continuous bivariate distri- 
bution H with underlying copula C, /ni (,n - P, pn - p)' converges weakly, as n -+ oc, to a 
normal random vector with zero mean and covariance matrix 

, , with K,= 
o'K cr; / 4 

where o,2 c.2 and op_ are the variances of (9) corresponding respectively to the choices 
(a, b) = (1,0), (0, 1), and (2, -1), and where the pair (U, V) is distributed as C. In partic- 
ular, c = 31/30 and _ = 2 =_ 1 under independence. 

Remark 1. When condition (3) holds, making the change of variables (x, y) = (1 - u, 1 - v) 
in Equation (9) shows that one must then have -rj = r2jp_ and hence K =- (2 in Proposi- 
tion 3. Models for which C = C include the Farlie-Gumbel-Morgenstern, the Gaussian, the 
Plackett (1965), and Frank's copula (Nelsen 1986; Genest 1987); note that the latter is the only 
Archimedean copula that is radially symmetric (see, for instance, Nelsen 1999, p. 97). 

Remark 2. Since the joint distribution of \/- (p, - p) and V/ni (rn - r) is also known to be 
normal with limiting correlation equal to 1, Proposition 3 implies that 

lim corr(&,, r,) = lim corr(Gn, p,) = - 
n-+oo n-o Vw 31 

under the null hypothesis of independence. 

The following examples provide numerical illustrations of these various facts. 

Example 1 (continued). If (X, Y) follows a Farlie-Gumbel-Morgenstern distribution with 

marginals F and G and parameter 0 E [-1, 1], then 

(X ) - = pe(XY') - = T9(x, ) -= 

and 

, N-(,,) ) (. 0, -3 + 2 0 +?: 

42 Vol. 31, No. 1 



MEASURE OF RANK CORRELATION 

as n -4 oo. Furthermore, cov(V/nn, v/npn) - 1- 11 02/45 and 

r/ p3150 
- 770 02 

corr(~,,, pn ) > 3255 + 28 0 - 785 02 + 703 

The latter is a decreasing function of 0 taking values in the interval [0.9747, 0.9887]. 

Example 2 (continued). For any pair (X, Y) distributed as Ho,a,b, one finds 

_ 2ab(ab + 4a + 4b + 15)0 
a, b(X ' ) (a + 2)(a + 3)(b + 2)(b + 3)' 

which is (happily!) symmetric in a and b. An algebraic expression for the asymptotic variance 
of j/Y (n, - ~) exists but is rather unwieldy. 

Example 3 (continued). When the population is bivariate normal with Pearson correlation r, it 
was seen earlier that Vr (X, Y) = pr (X, Y), and hence r (X, Y) = Pr (X, Y). Note, however, 
that ~, is not necessarily equal to p,. In this case, numerical integration must be used to compute 
the asymptotic variance of j/ (i,, - ) or the correlation between that statistic and p,. 

Example 4 (continued). Whether the pair (X, Y) is distributed as a shuffle of min (6) or (7), one 
has ~o (X, Y) = vr (X, Y), since both of these copulas are symmetric in their arguments, and 
the symmetrized version ~ of Blest's index satisfies all the conditions listed by Scarsini (1984), 
except for (e). If (X-, Y) is distributed as (6), then 

(.,,- (o) -+ N[0, 1605(1 - 0)(3 - 20)-] 

while if (X, Y ) is distributed as (7), then 

V((^.- 4) N [0,64 0'(1 - 
0)]. 

In both cases, p (X, Y) = 1 - 203 [because Spearman's rho satisfies condition (e)] and 
corr(<,, p,,) --+ 1 as n -*+ xc, for all values of 0 < 0 < 1. 

5. PERFORMANCE AS A TEST OF INDEPENDENCE 

While Blest's index may be valuable as a measure of discrepancy between two sets of ranks, 
because of its asymmetric character it would seem inappropriate as a test statistic for the null hy- 
pothesis of stochastic independence between random variables X and Y. In some circumstances, 
acceptance or rejection of -t( might conceivably depend on the rather arbitrary choice of v, or 
i,7 as a test statistic. 

The symmetrized statistic (,n escapes this criticism and thus yields a more easily defendable 
test procedure, whose potential is assessed below by comparing its performance with that of 
Spearman's rho and Kendall's tau, which are the two most common rank statistics used to this 
end. Asymptotic and finite-sample comparisons are presented in turn. 

5.1. Pitman efficiency. 

Using Proposition 3, it is a simple matter to compute Pitman's asymptotic relative efficiency 
(ARE) of tests T~ and T,, based on $, and p,, respectively. Given a family (Ceo) of copulas with 
0 = 0o corresponding to independence, standard theory (see, for instance, Lehmann 1998, p. 371 
if.) implies that 

_30 
", ARE(T ,T)- 31 pJ3 , 
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where -- = d~e/dO evaluated at 0 = 00o and pO is defined mutatis mutandis. The factor 30/31 
comes about because as mentioned in Proposition 3, the asymptotic variances of x\/i,n and 

/,In p are 31/30 and 1, respectively. 
It was already pointed out in Section 2 that ((X, Y) = p(X, Y) when the copula associated 

with the pair (X, Y) is radially symmetric. Consequently, 

30 
ARE(Te Tp) = 31- 96.77% 

for such models. There is thus no reason to base a test of independence on ~, (whose variance is 
larger than that of p,,) if the alternative satisfies condition (3), as is the case for the normal dis- 
tribution and the Farlie-Gumbel-Morgenstern, Plackett and Frank copulas, for instance. Other 
examples in which ARE(Te, Tp) can be computed explicitly are given below. 

Example 5. Suppose that the copula of a pair (X, Y) is of the form 

Ce(u, v)= (u- +v-0 - 1)1/0, 0 > 0 

with Co(u, v) = lime_.o Ce (u, v) = uv for all 0 < u, v < 1. This Archimedean copula model, 
generally attributed to Clayton (1978), is quite popular in survival analysis, where it provides a 
natural bivariate extension of Cox's proportional hazards model; see, for instance, Oakes (2001, 
Section 7.3). One can easily check that 

'OCo(u, v) 
Co(u,-v) lim 0 = uvlog(u)log(v), 

so that 

po= 12 Co(u, v)dudv = 3 
J[o,1]2 4 

while 
= 12 A (2-u-v)Co(u, ) dudv = - 

[, 1]2 6 
yielding ARE(Te, Tp) = 1000/837 7 119.47%. Consequently, an improvement of some 20% 
can be achieved in large samples by using ~, instead of p, when testing for independence. 
The same would be true of r7, since ARE(TT, Tp) = 1 in this case (and all subsequent ones 
considered here). 

Example 6. Suppose that the pair (X, Y) is distributed as Gumbel's bivariate exponential distri- 
bution (Gumbel 1960a), whose copula (Nelsen 1999, p. 94) is 

Co(u, v) = uv exp{-0 log(u)log(v)}, 0 < 0 < 1 

with Co (u, v) = uv corresponding to independence. In this case, Co (u, v ) = -uv log(u) log( v), 
so that p0 = -3/4 and 4 = -5/6, and ARE(T~, Tp) = 1000/837, as above. 

Example 7. Suppose that the pair (X, Y) follows a bivariate logistic distribution as defined by 
Ali, Mikhail & Haq (1978). The corresponding copula is then (Nelsen 1999, p. 25) 

U 'U 
CO'(u, v) = 1 (1-)(1 -1 <0< 1 

with 0 = 0 corresponding once again to independence. In this case, p0 = -% = 1/3, whence 

ARE(T~, Tp) = 30/31, as is the case for radially symmetric copulas (which this one is not). 
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Example 8. Suppose that the distribution of (X, Y) is a member of the bivariate exponential 
family of Marshall & Olkin (1967), considered as a prime example of "common shock" model 
in reliability theory. Its associated copula, known as the generalized Cuadras-Auge copula 
(Nelsen 1999, ?3.1.1), is 

Ca,b(u, v) = min(l-v, 1-a 1-b) 

with 0 < a, b < 1. For this family, independence occurs whenever min(a, b) =- 0. Furthermore, 

3ab 
Pa,b = 

2a + 2b- ab 

with the convention that Pa,b = 0 when a = b = 0, so that 

OPa,b _ Opa,b _ 3 

Ob b=0 Oa a=o 2 

when the other parameter is fixed. A closed-form expression (not reproduced here) is also avail- 
able for 'a,b, and symbolic calculation yields 

Ofa,b _ 0a,b _ 4 

Ob b=O Oa a=o 3 

whence ARE(T~, Tp) = 640/837 ~ 76.46%. 

As an additional example, consider the one-parameter family obtained by setting b = ka for 
some fixed 0 < k < 1/a. Then p' = 3k/(2k + 2) and 

_ k(8 + 19k + 8k2) 
?0 (2+3k)(3 + 2k)(1 + k)' 

so that Pitman's ARE is a function of the constant k that is plotted in the left panel of Figure 2. 
The ARE is seen to reach its minimum value of 640/837 when k -+ 0 or oo. Its maximum, 
namely 392/465 m 84.30%, occurs when k = 1, which corresponds to the standard copula of 
Cuadras & Auge (1981). 

ARE(T ,TP) ̂  ARE(Te ,P) ^ 

0.84- 
1.18- 

0.82- 1.16- 

1.14- 
0.80 - 

0.78-^^^^~~~~~ \ ~~1.12- 
0.78 - 

1.10- 

0 5 10 15 20 0 5 10 15 20 k 

FIGURE 2: Pitman's asymptotic relative efficiency for the generalized Cuadras-Auge copula 
of Example 8 when b = ka, plotted as a function of k; ARE(T~, Tp) is depicted in 

the left panel, while ARE( T7, Tp) is displayed in the right panel. 

Examples 5 to 8 show that a test of independence based on the symmetrized version of Blest's 
coefficient is sometimes, but not always, preferable to Spearman's test in large samples. Inter- 
estingly, however, in general (since p, and T,, are usually equivalent asymptotically) the test 
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based on pn or Tn can be outperformed asymptotically by either the test involving . or a similar 
procedure founded on 

d - 4n.,+5 6 .R4S(4 Ri + Si) 
n- I n3-n - = \ n+ i 

2n-i -+l 6Si 
n - 1 6 n3 n (R +S )n 

defined as in (8), but with Ri = n +1 - Ri and Si = n + 1 - Si instead of Ri and Si, respectively. 
Since using the reverse ranks amounts to working with the transformed data (-X1, -I),4..., 
(-Xv, -' ), this new statistic is complementary to 6n in that it emphasizes discrepancies ob- 
served in the greatest ranks induced by the original variables. 

In view of the discussion surrounding equation (5), it is plain that , is an asymptotically 
unbiased estimator of 

?(X, Y) -= Y(-X, - ) = 2p(X, ?Y) - (X, Y). (10) 

Calling on Proposition 2, one can also check readily that the limiting distribution of , is actually 
the same as that which n would have if the underlying dependence function were what Nelsen 
(1999, p. 28) calls the survival copula, that is, C(u, v) = u+v- I +C( - u, 1 -v). Furthermore, 
var(G) = var( ) for any sample size n > 1 under the null hypothesis of independence. 

The right panel of Figure 2 shows ARE(Tc, Tp) as a function of k for the generalized 
Cuadras-Auge copula of Example 8 with parameter b = ka. The curve reaches its minimum 
value of 512/465 m 110.11% at k = 1. The ARE tends to 1000/837 119.47% as k -+ 0 
or ,o. 

More generally, it follows from relation (10) that % = 2p' - ~, whence 

31 "/ 1 2 

-ARE(T, T) - p/ ARET T } ,o) 
- 22 - -ARE(Tr, T.) , 

so that the two AREs are monotone decreasing functions of each other. Accordingly, 

3 
max{ARE(T, Tp),ARE(T Tp)} =max{x, (2- v/ )2}, 

where x = (31/30) x ARE(T, Tp) > 0. Since the right-hand side is minimized when x = 1, 

30 
max{ ARE(T Tp), ARE(T Tp)} > 31 96.77%. 

Moreover, at least one of T~ or Tc provides an improvement over Spearman's test unless 

a=?-5E (2 -v 32 ;) (0.9834, 1.0165). 

From the above examples and the authors' experience with other copula models, it would ap- 
pear that for "smooth" families of distributions, the largest possible asymptotic relative efficiency 
attainable with either T~ or Tg is 1000/837, that is, when Y = 9 / 10 or 10/9, as in Examples 5, 
6 and 8. The exact conditions under which this occurs remain to be determined, however. 

5.2. Power comparisons in finite samples. 

To compare the performance of tests of independence based on p. > , p. and r7, Monte Carlo 
simulations were carried out by Plante (2002) for various sample sizes and families of distri- 
butions spanning all possible degrees of association between stochastic independence (p = 0) 
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and complete positive dependence (p = 1), whose underlying copula is the Frechet upper bound 

M(u, v) = min(u, v). 
Results reported herein are for pseudo-random samples of size n = 25 and 100 for the 

normal (which is archetypical of radially symmetric copulas), the Clayton (Example 5), and the 
bivariate extreme value distributions of Gumbel (1960b) and Galambos (1975). The latter two 
have copulas of the form 

Co (u, v) = exp log( Uv)A{ log ) } 

with 

A(t) = {to + (1- t)}1/ 0 >1 

for Gumbel's model and 

A(t) = 1 - {t-0 + (1 -t )- }1/ 0 > 0 

for Galambos's model; see, for instance, Ghoudi, Khoudraji & Rivest (1998). 
Figures 3 to 6 compare the power of the (two-sided) tests based on ,, ,, pn and rT under 

the four selected models when n = 25 (left panel) and n = 100 (right panel). These curves are 
based on 5000 replicates. In each case, the test statistic was standardized using its exact variance 
under the null hypothesis of independence and compared to the 97.5th centile of the asymptotic 
standard normal distribution. [Out of curiosity, the authors also carried out simulations for tests 
of independence based on v,? and i,n; they found that in all cases, the power curve nearly matched 
that of .] 

Power * Power 4 

1.0- 1.0- 

0.8- / 0.8- 

//?y 
0.6- / 0.6- 

0.4- 0 / 4 
/ ----- r -- -- 

,/ __ p ..... / p ..... 

0.2- 0.2- 

0.0 0.0- o.o , f , * o.o- . , --I-- 
0.0 0.2 0.4 0.6 0.8 1.0 p 0.0 0.2 0.4 0.6 0.8 1.0 p 

FIGURE 3: Power curve for rank tests of independence of level a = 5% based on p7, r7, $n and $, , 
drawn as a function of Spearman's rho for random samples of size n = 25 (left panel) and 

n = 100 (right panel) from the bivariate normal distribution. 

According to Figure 3, there is very little evidence for choosing between the four procedures 
when the underlying dependence structure is normal, even when n is small. Although strictly 
speaking, the test based on Kendall's tau is best, its slight advantage tends to be attenuated as the 
sample size increases; and as expected, power generally increases with the sampling effort. 
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FIGURE 4: Power curve for rank tests of independence of level a = 5% based on pn, Tn, &n and ~n, 
drawn as a function of Spearman's rho for random samples of size n = 25 (left panel) and 

n = 100 (right panel) from Clayton's bivariate copula. 

As suggested by Example 5, the test based on ~n should be preferable to those based on 
Spearman's rho or Kendall's tau in Clayton's model. This is confirmed in Figure 4, where the 
good performance of T~ is compensated by the comparative lack of power of T~, as already 
discussed in Section 5.1. 

Finally, Figures 5 and 6 provide examples of extreme value distributions in which greater 
power accrues from the use of the statistic Gn than from either Spearman's rho, Kendall's tau or 
the symmetrized version f, of Blest's coefficient. 

Power 4 

- - p ~ 
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FIGURE 5: Power curve for rank tests of independence of level a = 5% based on pn, Tr., ,1 and 71,, 
drawn as a function of Spearman's rho for random samples of size n = 25 (left panel) and 

n = 100 (right panel) from Gumbel's bivariate extreme value copula. 
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FIGURE 6: Power curve for rank tests of independence of level a = 5% based on pn, Tn, ~n and ln, 
drawn as a function of Spearman's rho for random samples of size n = 25 (left panel) and 

n = 100 (right panel) from the bivariate extreme value copula of Galambos. 

6. CONCLUSION 

This paper continues the work of Blest (2000) by showing that his coefficient is asymptotically 
normal with parameters for which an explicit form is given in several instances. A symmetric 
version of his measure is also proposed which is highly correlated with Spearman's rho while 
retaining Blest's idea that greater emphasis should be given to discrepancies in the small ranks 
induced by two variables observed on the same set of individuals. The new measure, whose limit- 
ing distribution is also normal, is compared to Spearman's rho and Kendall's tau as a test statistic 
for independence, both through simulations in small samples and in terms of asymptotic relative 
efficiency. It is shown that nonnegligible improvements in power are possible, either when the 
test is based on the symmetrized version &n of Blest's coefficient, or on a complementary statistic 
, involving reverse ranks. 

It would be of interest, in future work, to characterize the type of alternatives to inde- 
pendence for which ., is preferable to ~n. A more ambitious project would be to iden- 
tify polynomials Q(u, v) and dependence structures for which an empirical coefficient of the 
form f Q(u, v) dC( ,(u v) would be a powerful test statistic. Finally, in the spirit of Hallin & 
Puri (1992), Ferguson, Genest & Hallin (2000) or Genest, Quessy & Remillard (2002), the merits 
of different variants of Blest's index could also be investigated as measures of serial dependence 
or as tests of randomness in a time series context. 

APPENDIX 

Explicit formulas for 

var( = va3 _ RiSi 4 - + 
(n,3 -_n)- var\ n+ 1 9 2 

and 

corr(,n p, ) = corr { RiSi (4- Ri, 
i=1 n + 1 ' 

. .... 

can be found under the assumption of independence through repeated use of the following ele- 
mentary result. 
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LEMMA. Let (X1, Y1),..., (Xn, Yn) be a random sample from some continuous distribution 
H(x, y) = F(x)G(y), and let (R1, S1),..., (Rn, Sn) be its associated set of ranks. If J, K, L 
and M are real-valued functions defined on the integers { 1,..., n}, then 

E{ J(Ri)K(Si) = JE1(i) E K(j). 
{E11 } ~ ~n {=1 'i } 

and 

E { J(Ri)K(Si)L(Rk)M(Sk)} J (i)L(k) } { K(j)M(t). 
i?kk j?k 

Proof. The first identity can be found, for example, in the book of Hajek (1969, Th. 24B, p. 117). 
The second one is undoubtedly known as well, but harder to locate. A proof is included here for 
completeness. 

Without loss of generality, one may write 

S J(Ri)K(Si)L(Rk)M(Sk) = S J(i)K(qt,i)L(k)M(qt,k) 
i?k i?k 

foraspecific element Qt = (qt,1,..., qt,n) inthecollectionQ = {Qi,..., Qn!} of permutations 
of the vector ( 1,..., n). Under the hypothesis of independence, all points in Q are equally likely. 
Thus, if QT denotes a random permutation in this set, one has 

E{ 
E J(Ri)K(Si)L(Rk)MI(Sk)} = E{ J(i)K(qT,i)L(k)M(qT,k) 
i?k i?k 

n! 

-= - 
E E J(i)K(qt,i)L(k)M(qt,k) 
t=1 i4k 

n ! 

=- ' J(i)L(k) E K(qt,i)M(qt). 
* i?k t=1 

Now for arbitrary integers i, j, k, e {k1,..., n} with i : k and j : L, the event (qt,i, qt,k) = 

(j, t) occurs exactly (n - 2)! times as t ranges over 1, .., n!. Therefore, 

K(qt,)AM(qt,k) = (n - 2)! E K(j)M((). 
t=1 jgt 

which yields the second identity. 

As an example of application, 

E{RiS(4 - Ri )} = 4ERiSi - E R Si 

i= ( rl 7 - 2 ( 1 ( .) 

n(n + 1)(4n + 5) 
6 

from which it follows that E(%, ) = 0 under the assumption of independence. All other compu- 
tations are similar and are easily performed with symbolic-calculation software such as MAPLE. 
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