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Abstract: The weighted likelihood can be used to make inference about one population when data from
similar populations are available. The author shows heuristically that the weighted likelihood can be seen
as a special case of the entropy maximization principle. This leads him to propose the minimum averaged
mean squared error (MAMSE) weights. He describes an algorithm for calculating these weights and shows
its convergence using the Kuhn–Tucker conditions. He explores the performance and properties of the
weighted likelihood based on MAMSE weights through simulations.

Poids empiriques non paramétriques pour la vraisemblance
Résuḿe : La vraisemblance pondéŕee permet de faire de l’inférence sur une population en incorporant des
donńees issues de populations semblables. L’auteur montre heuristiquementque la vraisemblance pondé-
rée peut̂etre vue comme un cas particulier du principe d’entropie maximale. Ceci leconduità proposer les
poids EQMIM (pour erreur quadratique moyenne intégŕee minimale). Il d́ecrit un algorithme pour le calcul
de ces poids et en montre la convergence grâce aux conditions de Kuhn–Tucker. Il explore la performance
et les propríet́es de la vraisemblance pondéŕee baśee sur les poids EQMIM̀a l’aide de simulations.

1. INTRODUCTION

The work of Stein (1956) showed that a biased estimate could sometimes be preferable to the best
unbiased estimate as the biased one may compensate by featuring a smaller variance than the un-
biased one. The modern terminologyborrowing strengthis most often used in a Bayesian setting,
but refers in general to attempting to improve precision by using data from different sources. The
weighted likelihood is designed to borrow strength while making minimal assumptions on the
populations that are not of prime inferential interest.

The weighted likelihood that we study in this paper dates from the original work of
Hu (1994), and its enhancements in Hu & Zidek (2002). The paradigm that we consider is a
specific case of theirs that was introduced by Wang (2001) andfurther developed in Wang, van
Eeden & Zidek (2004) and in Wang & Zidek (2005). We thus suppose that data comes fromm
distinct populations that have different yet similar distributions. More formally, for each fixed
i = 1, . . . ,m,

Xi1, . . . ,Xini

iid
∼ Fi

and we denote byfi the corresponding density or mass function. Population 1 isof inferential
interest, but the weighted likelihood

Lλ(θ) =

m∏

i=1

ni∏

j=1

f(Xij | θ)
λi/ni

lets other populations contribute to the inference so that the relevant information they contain
is not lost. The density (or mass) functionsf(x | θ) form a family of distributions indexed by
θ ∈ Θ such that there existsθ0 ∈ Θ for which f(x | θ0) = f1(x). The vector of exponents
λ = [λ1, . . . , λm]T downweights the contribution of the data according to the degree of similarity
between the populations. The maximum weighted likelihood estimate (MWLE) is a value ofθ
that maximizesLλ(θ).
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Ideally, the weightsλi would be determined from scientific knowledge, but using data-based
weights is more pragmatic. The ad hoc methods proposed by Hu &Zidek (2002) as well as the
cross-validation weights of Wang (2001) and Wang & Zidek (2005) provide the only adaptive
weights in the literature. None of these solutions is fully satisfactory.

The cross-validation weights, for instance, are flawed by instability problems. The simulation
results in Wang (2001) and Wang & Zidek (2005) can be reproduced only at the cost of fine-
tuning the algorithms numerically. In the ideal situation where some of the populations are
identical to Population 1, the cross-validation weights may not even be defined.

Different methods allow one to borrow strength from other populations. Such methods typi-
cally rely on hierarchical models involving them−1 populations that are not of prime inferential
interest. Hierarchical models are primarily used in a Bayesian setting, which means that prior
distributions for the hyperparameters must also be determined.

Efron (1996) develops an empirical Bayes method under a paradigm akin to ours where one
population is deemed of prime interest. While he determines priors from the data in his work,
the necessity of choosing a common model for all populations(in order to link them through
hyperparameters) is not waived. By comparison, the weighted likelihood with the weights that
we propose does not assume that the data follow a common model. The weights adapt, keeping
the populations that are sufficiently similar to our target distribution, and dismissing the ones
that are too different. The absence of parametric assumptions (except for the population of prime
interest) may be a major advantage in situations where no natural or reliable hierarchical models
are available, or when one is not completely comfortable with modeling the external populations.
Being nonparametric, our weights are not subject to model misspecification.

It will become clear from the argument in Section 2 that the weighted likelihood is most use-
ful when a mixture of the data from Population2, . . . ,m is close to the target distribution. Such
situations arise naturally in practice. Suppose, for instance, that previous studies based on gen-
der, race, or other demographic variables, are available. Inference on the global population could
be complemented by data from all the specific groups. When populations are likely to be similar,
whether they come from adjacent geographical regions or akin populations, the weighted likeli-
hood is also likely to produce good results since any mixtures of the populations will naturally
be close toF1.

In Section 2, we heuristically derive the weighted likelihood from Akaike’s entropy maxi-
mization principle. That development justifies the formulation of the MAMSE weights that we
define formally in Section 3. Section 4 presents some invariance properties of the MAMSE
weights. An algorithm for computing these weights is proposed in Section 5: we use the Kuhn–
Tucker sufficient conditions to show that it yields the desired solution. Simulation results appear
in Section 6 where the performance of the MWLE with MAMSE weights is explored for dif-
ferent plausible scenarios. Finally, the asymptotic behavior of the MAMSE weights is briefly
discussed in Section 7 and concluding remarks are in Section8.

2. HEURISTIC JUSTIFICATION OF THE WEIGHTED LIKELIHOOD

Consider first the one-sample situation wheren independent data pointsY1, . . . , Yn come from
a distribution whose unknown and unknowable density isg(y). In his pioneering work, Akaike
(1977) argues that the goal of inference should be the estimation of g(y). When a parametric
modelf(y | θ) is to be used, Akaike proposes maximizing the relative entropy

B(g, f) = −

∫
g(y)

f(y | θ)
log

{
g(y)

f(y | θ)

}
f(y | θ) dy.

The relative entropy is in fact minus the Kullback–Leibler divergence betweenf andg. In that
case, it is a measure of the proximity of the distributionsf andg. The expression forB(g, f)
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can be further simplified

B(g, f) = −

∫
log

{
g(y)

f(y | θ)

}
g(y) dy =

∫
log{f(y | θ)}g(y) dy −

∫
log{g(y)}g(y) dy.

In particular, when the objective is to maximizeB(g, f) as a function ofθ, the last term of the
rightmost expression can be ignored since it does not dependonθ.

Calculating the entropy would require the knowledge of the unknown and unknowable true
distributiong. We thus have to estimate it. Let

Ĝ(y) =
1

n

n∑

j=1

11(Yi ≤ y)

be the empirical distribution function of the data setY1, . . . , Yn. The indicator variable11( · ) is
equal to one if all the elements of its argument are true, and equal to 0 otherwise. UsingdĜ(y)
as an approximation todG(y) = g(y) dy yields

∫
log{f(y | θ)}dĜ(y) =

1

n

n∑

i=1

log f(Yi | θ),

the log-likelihood! Therefore, calculating the likelihood is equivalent to calculating the entropy
where the true distribution is estimated by the empirical distribution of the data. Hence, the
maximum likelihood estimate can be seen as a special case of Akaike’s entropy maximization
principle.

Consider now them-population paradigm of Wang (2001) introduced earlier. With appro-
priate weights, the mixtureFλ =

∑m
i=1

λiFi can be arbitrarily close toF1. Let F̂i denote the
empirical distribution function based on the sample from populationi. The weighted empirical
distribution function, written

F̂λ =
m∑

i=1

λiF̂i with λi ≥ 0 and
m∑

i=1

λi = 1,

calledrelevance weighted empirical distributionby Hu & Zidek (1993), may use more data than
F̂1, and thus be less variable. Hu & Zidek (1993) note the implicit bias involved in defacto
replacingF1 by Fλ, but do not investigate as we do here the possibility of trading bias for
precision.

In the context of maximum entropy, consider using the weighted empirical distribution func-
tion as an estimate ofF1. Then,

∫
log f(x | θ) dF̂λ(x) =

m∑

i=1

λi

∫
log f(x | θ) dF̂i(x) =

m∑

i=1

λi

ni

ni∑

j=1

log f(Xij | θ),

the weighted log-likelihood! The maximum weighted likelihood can thus be derived from
Akaike’s entropy maximization principle.

Based on the heuristics above, a good choice of weights should try to makeF̂λ close toF1.
The criterion for determining weights presented in the nextsection is to try to achieve that goal.
As a consequence, the weighted likelihood should be especially useful in situations where a
mixture of the distributions of populations2, . . . ,m is very similar to the target distribution.
Such situations are not suitable for a hierarchical model which assumes that all data follow a
common distribution whose parameters are allowed to differfrom one group to another.
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3. MINIMUM AVERAGED MEAN SQUARED ERROR WEIGHTS

Let us now turn to the central proposition of this paper, the definition of nonparametric adaptive
likelihood weights.

As a prescreening step, samples that do not overlap with those of Population 1 are discarded
by setting their weights to zero. For simplicity, the notation below does not reflect the pos-
sibly reduced number of populations considered: we supposethat m populations remain after
prescreening.

The heuristics in Section 2 suggest that the maximum weighted likelihood estimate (MWLE)
could perform well ifF̂λ were close toF̂1 but would be less variable. These two requirements
are combined in the objective function

P (λ) =

∫ [
{F̂1(x) − F̂λ(x)}2 + v̂ar{F̂λ(x)}

]
dF̂1(x),

where the substitutions

v̂ar
{
F̂λ(x)

}
=

m∑

i=1

λ2
i v̂ar{F̂i(x)} and v̂ar{F̂i(x)} =

1

ni
F̂i(x){1 − F̂i(x)}

are based on the distribution of the random variableniF̂i(x) that follows a binomial distribution
for any fixedx.

We call the minimum averaged mean squared error (MAMSE) weights a vector of values
λ = [λ1, . . . , λm]T that solves the program

minimizeP (λ)

subject to{λi ≥ 0, i = 1, . . . ,m} and
m∑

i=1

λi = 1.

The name MAMSE comes from the resemblance of the integrand with the mean squared error
(Bias2 + Variance).

4. STRUCTURAL PROPERTIES

Choosing the empirical distribution function to define the MAMSE weights implies some invari-
ance properties that are discussed next.

THEOREM 1. The minimum averaged mean squared error weights are invariant to a strictly
increasing transformation of the data.

Proof of Theorem 1.Let Xij = g(Yij) whereg is a strictly increasing function of the real line.
Let Hi denote the cumulative distribution function ofYij . Then for ally, x = g(y) and any
i = 1, . . . ,m

Ĥi(y) =
1

ni

ni∑

j=1

11{Yij ≤ y} =
1

ni

ni∑

j=1

11{g(Yij) ≤ g(y)}

=
1

ni

ni∑

j=1

11{Xij ≤ x} = F̂i(x).

SinceP (λ) is integrated with respect todF̂1, a discrete measure, there is no Jacobian of trans-
formation in the integral and replacing all̂Fi by the correspondinĝHi will not change the ex-
pressionP (λ), nor its maximum. �
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THEOREM 2. The minimum averaged mean squared error weights do not depend on the para-
metric modelf(x | θ) used in the weighted likelihood.

Proof of Theorem 2.The result follows immediately from the definition of the MAMSE weights
and the choice of the nonparametric empirical distributionfunctions as estimates ofFi. �

THEOREM3. The maximum weighted likelihood estimate (MWLE) based on minimum averaged
mean squared error (MAMSE) weights is invariant under a one-to-one reparameterization of

f(x | θ) into g(x | τ)
∆
= f{x |h(τ)}, i.e., θ̂ is a MWLE iffτ̂ is a MWLE.

Proof of Theorem 3.By Theorem 2, the MAMSE weightsλ∗ = [λ∗

1, . . . , λ
∗

m]T are invariant to
the choice of parametric modelf(x | θ). If τ is such thatθ = h(τ) andh is a one-to-one mapping
of the parameter space, thenτmax is such that

m∏

i=1

ni∏

j=1

f{Xij |h(τ)}λ∗

i
/ni ≤

m∏

i=1

ni∏

j=1

f{Xij |h(τmax)}
λ∗

i
/ni

for all τ if and only if θmax = h(τmax) is such that
m∏

i=1

ni∏

j=1

f(Xij | θ)
λ∗

i
/ni ≤

m∏

i=1

ni∏

j=1

f(Xij | θmax)
λ∗

i
/ni

for all θ. Hence, the MWLE possesses the same functional invariance property as the maximum
likelihood estimator (MLE) if we use the MAMSE weights. �

5. COMPUTING THE MAMSE WEIGHTS

Substitutingλ1 = 1 −
∑m

i=2
λi allows one to embed the constraint

∑m
i=1

λi = 1 into the
objective functionP (λ). Let us write

λ̃ =




λ2

...

λm


 , V(x) =




v̂ar{F̂2(x)} 0
. ..

0 v̂ar{F̂m(x)}


 , F(x) =




F̂1(x) − F̂2(x)
...

F̂1(x) − F̂m(x)


 .

Then, the functionP (λ) can be written as

P (λ) =

∫ [{
F̂1(x) −

m∑

i=2

λiF̂i(x) −

(
1 −

m∑

i=2

λi

)
F̂1(x)

}2

+(1 − λ̃
T

1)2v̂ar{F̂1(x)} +

m∑

i=2

λ2
i v̂ar{F̂i(x)}

]
dF̂1(x)

=

∫ [
{λ̃

T

F(x)}2 + (1 − 2λ̃
T

1 + λ̃
T

11Tλ̃)v̂ar{F̂1(x)} + λ̃
T

V(x)λ̃
]
dF̂1(x)

=

∫ [
λ̃

T[
F(x)F(x)T + V(x) + 11Tv̂ar{F̂1(x)}

]
λ̃

−2λ̃
T

1 v̂ar{F̂1(x)} + v̂ar{F̂1(x)}
]
dF̂1(x)

= λ̃
T

Āλ̃ − 2λ̃
T

1b̄ + b̄ (1)

where

Ā =

∫ [
F(x)F(x)T + V(x) + 11Tv̂ar{F̂1(x)}

]
dF̂1(x),

b̄ =

∫
v̂ar{F̂1(x)}dF̂1(x).
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Hence, the minimum ofP (λ) without the constraintsλi ≥ 0 is the solution to the equation
Āλ̃ = b̄1. To ensure the weights are nonnegative, we apply the following algorithm and denote
its solution byλ∗ (or λ̃

∗

).

1. Solve the equation̄Aλ̃ = b̄1;

2. if all the weights obtained are nonnegative, stop. Otherwise set the negative weights to 0,
ignore the corresponding samples and repeat from Step 1 withthe reduced system. The
weight allocated to Population 1 from Step 1 cannot be negative (see the proof of Lemma 4
for details). If no other samples are left, thenλ̃ = 0 andλ1 = 1.

The objective functionP (λ) is quadratic and positive (thus convex). Since the constraints
form a convex set, intuition suggests thatλ∗ should be the global constrained minimum. Next
we prove this more formally.

Consider the generic program

minimizeP (λ)

subject toh(λ) ≤ 0,

whereλ ∈ IRm andh(λ) = [h1(λ), . . . , hk(λ)]T is a vector of functions, each being from IRm

to IR. Let ∇P (λ) denote the gradient ofP andP(λ) its Hessian. The same notation applies
to hi(λ), ∇hi(λ) andHi (λ). By definition, anm × m matrix B is positive definite (noted
B ≻ 0) if yTBy > 0 for all y ∈ IRm\{0}. The Kuhn–Tucker conditions (see, for instance,
Luenberger 2003, p. 316) are as follows:

KUHN–TUCKER SECOND ORDER SUFFICIENCY CONDITIONS. Leth1, . . . , hk andP be contin-
uous and twice differentiable functions fromIRm to IR. Sufficient conditions that a pointλ∗ be a
strict relative minimum point of the program above are that there existsµ = [µ1, . . . , µk]T ∈ IRk

such thatµ ≥ 0, µTh(λ∗) = 0,

∇P (λ∗) +

k∑

i=1

µi∇hi(λ
∗) = 0 (2)

and the matrix

P(λ∗) +

k∑

i=1

µiHi(λ
∗) ≻ 0. (3)

Note that from Equation (1), we have∇P (λ) = Āλ̃−1b̄ andP(λ) = Ā. The functionP (λ)
and its derivatives do not depend onλ1 since it was replaced byλ1 = 1− 1Tλ̃. Consequently, it
is implicitly understood in the following thatP andhi are functions of̃λ ∈ IRm−1, even when
we writeP (λ) andhi(λ) rather thanP (λ̃) andhi(λ̃).

LEMMA 1. The Hessian matrixP(λ) is positive definite.

Proof of Lemma 1.Remember that

Ā =

∫ [
F(x)F(x)T + V(x) + 11Tv̂ar{F̂1(x)}

]
dF̂1(x).

For any fixedx, each term of the integrand as written above is nonnegative definite. In particular,
for anyy ∈ IRm−1\{0},

yT
{
F(x)F(x)T + 11Tv̂ar{F̂1(x)}

}
y ≥ 0.
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The prescreening that we applied before optimizingP (λ) ensures that all remaining samples
overlap with that of Population 1. Therefore,̂var{F̂i(x)} > 0 for at least one of theX1j ,
j = 1, . . . , n1 and thus ∫

v̂ar{F̂i(x)}dF̂1(x) > 0.

Consequently, the diagonal elements of
∫

V(x) dF̂1(x) are strictly positive, which means that

yT

[∫
V(x) dF̂1(x)

]
y =

m−1∑

i=1

y2
i

[∫
v̂ar{F̂i(x)}dF̂1(x)

]
> 0

for anyy ∈ IRm−1\{0}. Therefore,yT
Āy > 0, i.e., the Hessian ofP , P(λ) = Ā, is positive

definite. �

COROLLARY 1. Equation(3) is satisfied.

Proof of Corollary 1. In our implementation of the general Kuhn–Tucker conditions, hi(λ) ≡

−λi+1. Therefore,Hi(λ)
∆
= ∇

T
∇hi(λ) = 0 are null matrices. From Lemma 1, we know that

P(λ∗) is positive definite, hence Equation (3) is satisfied. �

Applying the algorithm above will change negative weights to λi+1 = 0 for somei ∈ IC ⊂
{1, . . . ,m − 1} whereIC may be null. The setI contains the remaining indices and may also
be null.

Let J ⊂ {1, . . . ,m− 1} be a possibly null subset of indices, thenAI,J is the submatrix ofA
for the rowsi ∈ I and the columnsj ∈ J . We define the subvectorλI similarly.

The proposed algorithm involves solving reduced systems where the rows and columns for
i ∈ IC are excluded. The system of equations that has to be solved then involves the matrix

AI =

∫ [
FI(x)FI(x)T + VI,I(x) + 1I1

T

I v̂ar{F̂1(x)}
]
dF̂1(x).

For convenience of exposition, suppose that the order of appearance of theλi in λ̃ is such that
all theλi that are “forced” to be zero are last. Then, with

F(x) =



 FI(x)

FIC (x)



 ,

we can write

Ā =

∫





 FI(x)

FIC (x)







 FI(x)

FIC (x)




T

+ V(x) + 11Tv̂ar{F̂1(x)}


 dF̂1(x)

=

∫ 

FI(x)FI(x)T + VI,I(x) FI(x)FIC (x)T

FIC (x)FI(x)T FIC (x)FIC (x)T + VIC ,IC (x)





+ 11Tv̂ar{F̂1(x)}dF̂1(x)

=



 ĀI,I ĀI,IC

ĀIC ,I ĀIC ,IC



 .

In particular,AI = ĀI,I andAIC = ĀIC ,IC . Therefore, the last step of the proposed algorithm
is to solve the system of equationsAI λ̃I = ĀI,I λ̃I = 1I b̄. Note that this implies that the matrix
AI need not be recalculated at each step of the algorithm.
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LEMMA 2. If IC 6= ∅ andy ∈ IRm−1\{0} is any nonnegative vector withyI = 0 andyIC > 0,
then∇P (λ∗)Ty > 0.

Proof of Lemma 2.First note that the expression∇P (λ∗)Ty corresponds to the directional
derivative ofP at λ∗ in the directiony. Next consider the unit vectorei ∈ IRm−1 whose
ith element is 1. Fori ∈ IC , the global unconstrained minimum of the convex functionP is
outside of the half-spaceλi+1 ≥ 0. Therefore,P increases in the directionei at λ∗ and thus
∇P (λ∗)Tei > 0.

Finally, the hypothesized vectory can be expressed as a linear combination of vectors{ei :
i ∈ IC} with nonnegative coefficientsyi. Therefore,

∇P (λ∗)Ty =
∑

i∈IC

yi∇P (λ∗)Tei > 0. �

AlthoughI = ∅ or IC = ∅ may occur, the following proofs hold under these special cases.

LEMMA 3. The proposed algorithm solves the quadratic program

minimizeP (λ)

subject to{λi ≥ 0, i = 2, . . . ,m}.

Proof of Lemma 3.To verify that the Kuhn–Tucker conditions are satisfied, first note that for
i = 1, . . . ,m − 1 the functionshi(λ) ≡ −λi+1 are continuous and twice differentiable. The
quadratic objective functionP (λ) shares the same smoothness properties. Moreover, Corollary 1
establishes that Equation (3) holds.

At termination, the algorithm yields̃λ
∗

I ≥ 0 and λ̃
∗

IC = 0. The proposed solutionλ∗ is
thus in the feasible set. It remains to show that there existsa µ that satisfies the Kuhn–Tucker
conditions stated earlier. We will show thatµ = ∇P (λ∗) satisfies the required properties.
Expression (2) can be written

∇P (λ∗) +

m−1∑

i=1

µi(−ei) = ∇P (λ∗) − µ = 0

and clearly holds forµ = ∇P (λ∗). The other Kuhn–Tucker conditions require thatµ ≥ 0 and
µTλ̃

∗

= 0.

µ ≥ 0.

The last step of the algorithm before termination is to solveĀI,I λ̃I = 1I b̄. Therefore,

µI = ∇P (λ∗)I =
[
Āλ̃

∗

− 1b̄
]
I

= ĀI,I λ̃
∗

I + ĀI,IC λ̃
∗

IC − 1I b̄ = 0

sinceλ̃
∗

IC = 0.
In addition, we have from Lemma 2 thatµi = µTei = ∇P (λ∗)ei > 0 for all i ∈ IC , and

henceµIC > 0. Therefore,µ ≥ 0.

µTλ̃
∗

= 0.

We can write the conditionµTλ̃
∗

= 0 asµT

I λ̃
∗

I + µT

IC λ̃
∗

IC = 0. It is shown above thatµI = 0,

henceµT

I λ̃
∗

I = 0. Moreover, the definition of the setI implies thatλ̃
∗

IC = 0, thusµT

IC λ̃
∗

IC = 0
and the condition is satisfied.

Consequently, the solution found by the proposed algorithmis a strict relative minimum since
it satisfies the sufficient Kuhn–Tucker conditions. �
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LEMMA 4. The solution found by the proposed algorithm also satisfies the additional constraint∑m
i=2

λi < 1, or equivalently,λ1 > 0.

Proof of Lemma 4.The solution found by the algorithm satisfiesĀI,Iλ
∗

I = 1I b̄. ExpandinḡAI,I

in this equation yields
[∫ [

FI(x)FI(x)T + VI,I(x) + 1I1
T

I v̂ar{F̂1(x)}
]
dF̂1(x)

]
λ̃
∗

I = 1I b̄.

By subtractinḡb1I1
T

I λ̃
∗

I from both sides and multiplying the resulting equation byλ̃
∗T

I on the
left, we have

λ̃
∗T

I

[∫ {
FI(x)FI(x)T + VI,I(x)

}
dF̂1(x)

]
λ̃
∗

I = b̄λ̃
∗T

I (1I − 1I1
T

I λ̃
∗

I)

= b̄λ̃
∗T

I 1I(1 − 1T

I λ̃
∗

I) = b̄

(
1 −

∑

i∈I

λ∗

i+1

)(∑

i∈I

λ∗

i+1

)
.

By the same argument as in the proof of Lemma 1, the matrix on the left hand-side is positive
definite, and hence the expression itself is positive. Sinceb̄ andλ̃

∗

I are positive, we necessarily
have1 −

∑
i∈I λ∗

i+1 > 0. Hence, the solution to the program in Lemma 3 always satisfies the

additional constraint
∑

i∈I λ∗

i+1 =
∑m

i=2
λ∗

i < 1 (remember that̃λ
∗

IC = 0). This inequality is
equivalent toλ∗

1 > 0.
Regarding the comment to the effect thatλ1 cannot be negative for intermediate steps, con-

sider the development above for such steps whereλI may still contain negative values. Note that
the left-hand side of the expression is still positive because of its positive definiteness. Moreover,
the right-hand side can be written asλ1(1 − λ1)b̄, which means thatλ1(1 − λ1) is positive.
Therefore,λ1 ∈ (0, 1), except ifI = ∅ in which caseλ1 = 1 andλ̃ = 0. �

THEOREM 4. The proposed algorithm solves the quadratic program

minimizeP (λ)

subject to{λi ≥ 0, i = 1, . . . ,m} and
m∑

i=1

λi = 1.

Proof of Theorem 4.The result follows from Lemmas 3 and 4. �

6. SIMULATIONS

In this section, the finite-sample performance of the MWLE with MAMSE weights is evaluated
through simulations. Different cases of interest are considered.

The number of repetitions for each simulation study varies from 10000 to 40000. We used
the bootstrap on a pilot simulation to evaluate the variability of the values presented throughout
this section. Unless otherwise stated, the standard deviation of the error due to simulation is less
than one unit of the last digit shown.

6.1. Two normal distributions.

We first explore the merits of our weights for the ubiquitous normal distribution. Samples of
equal sizesn are drawn from

Pop. 1: N(0, 1), Pop. 2: N(∆, 1)

for different values of∆, each scenario being repeated 10000 times. Table 1 shows theaverage
MAMSE weights under different circumstances.
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TABLE 1: Average MAMSE weights for Population 1 when equal samples of sizen are drawn from
normal distributions with unit variance and means 0 and∆ respectively. The results are averages over

10000 replicates.

Average values of100λ1

n = 5 10 15 20 25 50 100 200 1000 10000

∆ = 0 72 71 72 71 71 72 72 72 72 72

0.001 72 71 71 72 72 72 72 71 72 72

0.01 72 72 71 72 72 72 72 72 72 74

0.10 72 72 73 73 73 73 74 76 86 98

0.25 74 74 75 76 76 79 83 88 97 100

0.50 77 79 80 82 83 88 93 96 99 100

0.75 80 83 86 88 89 94 97 98 100 100

1.00 84 87 90 92 93 96 98 99 100 100

1.50 89 92 94 95 96 98 99 99 100 100

2.00 93 94 96 97 97 99 99 100 100 100

From Table 1, we notice that the average weight of Population1 does not seem to go below
0.7 for these scenarios. Asn increases, the weight of Population 1 approaches 1, hence the
MAMSE weights detect that the distributions are different and ultimately discard Population 2.
Note that this convergence to 1 does not seem to occur for∆ = 0 and seems very slow when∆
is tiny. The average weight for Population 1 increases as well when the discrepancy between the
populations increases whilen is kept fixed.

Table 2 shows the performance obtained for the MWLE with MAMSEweights when com-
pared to the MLE. The ratio of the mean squared errors, 100 MSE(MLE)/MSE(MWLE) is
shown; a value greater than 100 means that the MWLE is preferable. This ratio is akin to the
relative efficiency of the MLE with respect to the MWLE.

TABLE 2: Relative efficiency as measured by 100 MSE(MLE)/MSE(MWLE). Samples of equal sizen are
simulated from normal distributions with unit variance and means 0 and∆ respectively. The results are

averaged over 10000 replicates.

Efficiency of the MWLE

n = 5 10 15 20 25 50 100 200 1000 10000

∆ = 0 146 145 144 144 143 143 144 144 144 143

0.001 147 146 145 144 143 143 142 143 143 144

0.01 146 146 145 144 143 143 144 143 141 127

0.10 143 143 142 140 139 135 128 118 89 94

0.25 139 134 131 125 123 110 96 87 91 99

0.50 127 117 108 104 97 88 88 90 97 100

0.75 114 103 95 91 89 87 91 95 99 100

1.00 103 94 90 88 88 90 94 97 99 100

1.50 89 88 89 91 91 94 98 98 100 100

2.00 84 87 91 92 93 96 98 99 100 100
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The MWLE performs better than the MLE for smalln and∆. Whenn and∆ increase, the
two methods eventually perform equivalently. For the casesin between however, the MLE is a
better choice than the MWLE. Fortunately, the loss (at most 16%) seems to be smaller than the
potential gain (up to 47%). When the two populations are identical, a steady improvement of
about 43% is observed. Note that we cannot expect to improve uniformly over the MLE since
the mean is an admissible estimator.

The weighted likelihood could be especially useful in situations where a large population is
available to support a few observations from the populationof interest. For the next simulation,
40000 replicates of each scenario are produced with the samenormal distributions as before,
but with samples of sizen and 10n for Population 1 and 2 respectively. Table 3 shows the
average weight allocated to Population 1; Table 4 shows the relative efficiency of the methods as
measured by 100 MSE(MLE)/MSE(MWLE).

TABLE 3: Average MAMSE weights for Population 1 when samples of sizen and10n are drawn from
normal distributions with unit variance and means 0 and∆ respectively. The results are averages over

40000 replicates.

Average values of100λ1

n = 5 10 15 20 25 50 100 200

∆ = 0 51 50 49 49 49 49 49 48

0.001 51 50 49 49 49 49 49 48

0.01 52 50 50 49 49 49 49 49

0.10 54 53 52 53 53 54 57 62

0.25 58 59 60 61 62 69 78 86

0.50 66 70 73 76 79 87 93 96

0.75 74 79 83 86 88 94 97 98

1.00 80 86 89 91 93 96 98 99

1.50 87 92 94 95 96 98 99 99

2.00 91 94 96 97 97 99 99 100

The general behavior of the weights is similar to that in the previous simulation, except that
their minimal average value is below 0.5 this time around. Asa consequence of its larger size,
the sample from Population 2 gets a heavier weight.

It appears that a larger Population 2 magnifies the gains or losses observed previously. For-
tunately however, the magnitude of the further improvements seem to exceed that of the extra
losses.

Note that the MAMSE weights are invariant to a common transformation of the data in all
populations. Therefore, simulation results would be identical (less simulation error) for normal
populations with varianceσ2 and with means 0 and∆σ respectively.

Overall, the MWLE works very well under the suggested scenarios.

6.2. Complementary populations.

We explained in Section 2 how the likelihood weights can be seen as mixing probabilities. Can
the MAMSE weights detect and exploit the fact that Population 1 has the same distribution as a
mixture of some of the other populations? Would the quality of the inference then be improved?

Pseudo-random samples of equal sizesn are drawn from the distributions

Pop. 1: N(0, 1), Pop. 2: |N(0, 1)|, Pop. 3: −|N(0, 1)|
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where | · | denotes absolute values. Hence Population 2 has a half-normal distribution and
Population 3 follows the complementary distribution.

TABLE 4: Relative efficiency as measured by 100 MSE(MLE)/MSE(MWLE). Samples of sizesn and10n

are simulated from normal distributions with unit variance and means 0 and∆ respectively. The results are
averaged over 40000 replicates.

Efficiency of the MWLE

n = 5 10 15 20 25 50 100 200

∆ = 0 223 223 223 222 222 221 222 221

0.001 223 225 223 221 222 223 221 220

0.01 223 222 222 220 221 221 220 218

0.10 216 209 203 197 191 169 142 113

0.25 187 165 147 135 125 100 83 78

0.50 139 111 97 90 85 79 83 89

0.75 111 91 85 82 82 85 90 94

1.00 98 85 84 83 85 90 94 97

1.50 88 86 88 89 90 94 97 98

2.00 86 89 91 92 93 96 98 99

We consider different sample sizes, each scenario being repeated 10000 times. The results
are summarized in Table 5. The first column shows 100 MSE(MLE)/MSE(MWLE); the other
columns show the average MAMSE weights allocated to each of the three populations.

First observe that the combined average MAMSE weight of Populations 2 and 3 accounts for
at least half of the total weight for all sample sizes. The MAMSE weights thus detect that an
equal mixture of Populations 2 and 3 share the same distribution as Population 1. Note also that
the relative efficiency is uniformly greater than 100, whichmeans that the MWLE with MAMSE
weights is preferable to the MLE in these situations.

TABLE 5: Relative efficiency as measured by 100 MSE(MLE)/MSE(MWLE) andaverage MAMSE
weights allocated to samples of sizesn drawn fromN(0, 1), |N(0, 1)| and−|N(0, 1)| respectively. The

results are averages over 10000 repetitions.

n Efficiency 100λ̄1 100λ̄2 100λ̄3

5 115 50 19 30

10 121 46 23 30

15 120 46 25 29

20 118 45 25 29

25 118 45 26 29

50 117 45 27 28

100 116 44 27 28

200 116 44 28 28

1000 115 44 28 28

10000 116 44 28 28

The columnEfficiencyshows 100 MSE (MLE)/MSEW (MWLE); the average MAMSE weights
allocated to each of the three populations appears in the other columns.
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6.3. Negative weights.

In most cases, the unconstrained optimization ofP (λ) yields positive weights. In some cases
such as the one that we are going to explore, negative weightssystematically occur. Some previ-
ous work such as van Eeden & Zidek (2004) showed that allowingnegative weights may some-
times boost the performance of the MWLE. We explore the possibility of such improvements
here.

FIGURE 1: Average values of100× the MAMSE weights without the constraintsλi ≥ 0. Samples of size
n, 10n andn are taken from each population. Population 2 is an equal mixture of Populations 1 and 3 that
respectively follow aN(0, 1) and aN(∆, 1) distribution. All results are averages over 40000 repetitions.

Imagine a situation where a measurement of interest is cheaply obtained, but it is costly to
determine whether a patient is diseased or not. We want to study the measurement of interest
on the diseased patients. Suppose we have two small samples (one diseased, one not) as well
as a larger sample where the health status of patients is unknown. If we allow negative values
for MAMSE weights, would they adapt by including the larger population in the inference and
allocating a negative weight to the small healthy population?

To represent the hypothetical situation above we simulate from the following distributions:

Pop. 1: N(0, 1), Pop. 2: 0.5N(0, 1) + 0.5N(∆, 1), Pop. 3: N(∆, 1),

where Population 1 and 3 have equal sample sizes ofn, but Population 2 has a sample size
of 10n. Each scenario is repeated 40000 times.

Although we allow weights to be negative, we still apply the preprocessing step and set the
weight of a population to 0 when it does not overlap with the sample from Population 1. If
the preprocessing were ignored, a nonnegative definiteĀ could occur occasionally, and then the
MAMSE weights would not be unique.

Applying the preprocessing does not affect the pertinence of this example: if the distributions
in the populations of diseased and healthy are so different that the samples are often disjoint,
there is no point in using the weighted likelihood to includePopulation 2 as the measurements
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are in fact a cheap diagnostic test. Moreover, previous simulations without preprocessing yielded
results that are not better than those presented here.

Figure 1 shows the average values of the unconstrained MAMSEweights for different sce-
narios. Negative weights do appear, hence the MAMSE criterion detects that Population 2 is a
mixture of the other two populations and removes the component which is not of interest.

For a large∆, notice how the negative weights are closer to 0 for smaller samples. In such
cases, there is a higher probability that the sample from Population 3 will be disjoint of the sample
from Population 1. As a result, the weight allocated to Population 3 is more often forced to 0 by
the preprocessing step. As the sample sizes increase, the samples overlap more frequently.

Table 6 shows the performances obtained by the MWLE with unconstrained MAMSE
weights. The MWLE performs better than the MLE in most cases, being almost twice as good in
many cases. Unfortunately, the performances for large∆ are very poor, especially in the cases
where the difference between the populations is so large that they overlap only slightly.

TABLE 6: Relative efficiency as measured by 100 MSE(MLE)/MSE(MWLE) when the MAMSE weights
are calculated without the constraintsλi ≥ 0. Samples of sizen, 10n andn are taken from each

population. Population 2 is an equal mixture of Populations 1 and 3 that respectively follow aN(0, 1) and
aN(∆, 1) distribution. All results are averages over 40000 repetitions.

100 MSE(MLE)/MSE(MWLE)

n = 5 10 15 20 25 50 100

∆ = 0 195 196 197 198 197 197 198

0.001 196 196 197 197 198 198 197

0.01 196 196 197 197 198 198 197

0.10 195 194 194 194 192 184 172

0.25 190 182 176 170 165 144 121

0.50 173 153 140 131 124 107 97

1.00 137 113 105 101 100 97 96

2.00 116 92 86 84 84 84 84

5.00 51 49 51 54 57 62 55

Using a weighted likelihood with negative weights providesan improvement over the MLE,
but a similar improvement may be obtainable when the constraints are enforced. Table 7 shows
the performance of the MWLE when the usual MAMSE weights are used. Figure 2 shows the
average values of the weights obtained in that case. Using the MWLE with positively constrained
MAMSE weights also provides an improvement over the MLE. This improvement is sometimes
larger than that obtained with unconstrained weights. To discern between the two versions of
MAMSE weights, Table 8 compares their relative efficiency; values above 100 favor the uncon-
strained weights. Note that the standard deviation of the error due to simulation in Table 8 can
be more than one unit, but does not exceed 1.3 units.

It seems that allowing negative weights further improves the performances only in a few
cases. In fact, Figure 2 shows that Population 2 by itself canbe used and Table 7 shows it has a
positive impact. Table 8 suggests that the constrained MAMSE weights are to be preferred more
often than not. If we consider other complications that arise from allowing negative weights,
(e.g., making the weighted empirical distribution function nonmonotone) keeping the constraints
λi ≥ 0 in the definition of the MAMSE weights seems a better option.

A different prevalence of the diseased in Population 2 couldaffect the simulation results. If
major differences were observed, the conclusion above could be revisited.
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FIGURE 2: Average values of100× the usual MAMSE weights (with constraintsλi ≥ 0). Samples of size
n, 10n andn are taken from each population. Population 2 is an equal mixture of Populations 1 and 3 that
respectively follow aN(0, 1) and aN(∆, 1) distribution. All results are averages over 40000 repetitions.

TABLE 7: Relative efficiency as measured by 100 MSE(MLE)/MSE(MWLE) when the usual MAMSE
weights (i.e., constrained to positive values) are used. Samples of sizen, 10n andn are taken from each

population. Population 2 is an equal mixture of Populations 1 and 3 that respectively follow aN(0, 1) and
aN(∆, 1) distribution. All results are averages over 40000 repetitions.

100 MSE(MLE)/MSE(MWLE)

n = 5 10 15 20 25 50 100

∆ = 0 211 209 210 210 209 208 208

0.001 212 210 209 209 210 209 208

0.01 212 210 210 209 210 209 208

0.10 212 209 207 206 203 194 180

0.25 207 196 187 180 173 146 118

0.50 186 161 144 131 122 98 82

1.00 139 111 97 89 86 79 82

2.00 97 82 79 78 79 84 90

5.00 51 48 50 53 57 68 79
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TABLE 8: Relative efficiency of the MWLE with and without the constraintsλi ≥ 0 as measured by 100
MSE(constrained MWLE)/MSE(unconstrained MWLE). Samples of sizen, 10n andn are taken from

each population. Population 2 is an equal mixture of Populations 1 and 3 thatrespectively follow aN(0, 1)

and aN(∆, 1) distribution. All results are averages over 40000 repetitions.

100 MSE(constrained)/MSE(negative)

n = 5 10 15 20 25 50 100

∆ = 0 92 94 94 94 95 95 95

0.001 92 93 94 94 94 95 95

0.01 92 93 94 94 94 95 95

0.10 92 93 94 94 94 95 96

0.25 92 93 94 95 96 98 102

0.50 93 95 98 100 102 109 119

1.00 99 102 109 114 117 123 117

2.00 119 112 109 107 107 100 94

5.00 100 101 102 102 101 91 69

6.4. Earthquake data.

We now use a model whose weighted likelihood estimate does not have a simple form, i.e., it is
not a weighted average of the MLE of each population.

Natural Resources Canadahttp://earthquakescanada.nrcan.gc.ca/ maintains an educational web-
site with resources about earthquakes. From their website,it is possible to download data about
recent western Canadian earthquakes. The histograms in Figure 3 show the magnitude of the
earthquakes that occurred in the 5-year period from 12 February 2001 to 12 February 2006.
Events are divided into 3 groups depending on the geographical location of their epicenter. For
the purpose of this example, we make the assumption that the magnitudes of the earthquakes
are independent random variables and fit a gamma distribution to each of the three populations
using maximum likelihood. The fitted curves appear on Figure3 and the estimated values of
their parameters are shown in Table 9 along with the number ofobservations in each area. The
gamma model is parametrized as

f(x |β, µ) =
ββµ

Γ(βµ)
xβµ−1e−βx

for β, µ, x > 0.

TABLE 9: Number of earthquakes in three areas of western Canada between 12 February 2001 and 12
February 2006. The magnitude of these earthquakes is modeled by a gamma distribution; the maximum

likelihood estimates appear below and are used as the “true” parameters for this simulation.

Lower Mainland – Elsewhere in BC Yukon and

Vancouver Island or in Alberta North West Territories

β 1.654 2.357 6.806

µ 1.437 1.869 2.782

n 4743 4866 1621
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FIGURE 3: Histograms of the magnitude of earthquakes measured between 12 February 2001 and 12
February 2006 for three different areas of western Canada. The curves correspond to the fitted gamma

density.

We focus our interest on the magnitude of the next earthquakewith epicenter in the Lower
Mainland – Vancouver Island area. Suppose that only the 50 most recent events from each of
the three regions are available. Would the MWLE that uses datafrom all three regions provide
a better estimate than the MLE? To investigate the question,we produce 10000 pseudo-random
samples of earthquakes based on the fitted gamma models shownabove.

The average MAMSE weights are 0.959 for the Lower Mainland – Vancouver Island area,
0.041 for the rest of British Columbia and Alberta and finally, nearly 0 for Yukon and North West
Territories. Although it looks like a small contribution, the MSE of the MWLE for the vector
(β, µ) was smaller with 100 MSE(MLE)/MSE(MWLE)=107.

We also considered other values of possible interest, namely some probabilities about the
magnitude (M ) of the next earthquake that are all obtained by plugging theMLE or MWLE in
the gamma model. Table 10 summarizes these results.

TABLE 10: Efficiency in estimating some probabilities about the magnitude of the next earthquake in the
Lower Mainland – Vancouver Island area followed by the average of theactual estimates and their true
values. Efficiency is measured by 100 MSE(plug-in MLE)/MSE(plug-in MWLE). The following four

columns contain different probabilities that must be multiplied by the corresponding multiplier.

Prob Efficiency MLE MWLE Model Data Multiplier

P(M > 1) 123 62 63 68 51 ×10−2

P(M > 2) 114 22 24 40 22 ×10−2

P(M > 3) 112 66 73 174 98 ×10−3

P(M > 4) 113 19 21 51 26 ×10−3

P(M > 5) 112 51 59 99 53 ×10−4

P(M > 6) 80 14 17 12 6 ×10−4

The columnEfficiencyof Table 10 corresponds to the relative efficiency of using the MWLE
compared to using the MLE as plug-in parameters for the gammamodel in order to evaluate the
probability of interest. The numbers shown are 100 MSE(plug-in MLE)/MSE(plug-in MWLE)
followed by the estimated values ofP (M > k) using the MLE and the MWLE as plug-in
parameters. For comparison purposes, the columnsModelandDatacontain respectively the true
probabilities (from the simulated model) and the empiricalproportions in the complete data set.
All probabilities are scaled for easier reading; using the corresponding multiplier will yield the
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original value. Note that discrepancies with the empiricalprobabilities reveal weaknesses of the
gamma model to perfectly represent the magnitude of earthquakes rather than an advantage for
one method over the other.

Interestingly enough, the MSE of the estimates is almost always smaller with the MWLE.
Improved performance is hence possible by using the MWLE withMAMSE weights in this
situation with distributions copied from real life.

7. ASYMPTOTIC PROPERTIES

Because they are calculated from the data, the MAMSE weightsare random variables. Hu (1997)
proves the weak consistency and the asymptotic normality ofthe maximum weighted likelihood
estimate, but his results hold only for fixed weights, i.e., weights that may depend on sample
sizes, but that are not random variables.

For the case of adaptive weights such as the MAMSE weights, further work has been done by
Wang, van Eeden & Zidek (2004). They prove the consistency and normality of the maximum
weighted likelihood estimate under the assumption that theweights shift entirely to the popula-
tion of interest, i.e.,λ → [1, 0, . . . , 0]T, at a specified rate as the sample sizes of all populations
go to infinity. The simulations of Section 6 seem to indicate that the MAMSE weights do not
behave that way. When a mixture of the additional populationsis identical to the target, the
weights are shared between these populations even for very large sample sizes.

The MAMSE weights minimizeP (λ) and hence guarantee thatλ′ = [1, 0, . . . , 0]T is a
suboptimal choice, which implies that
∫ {

F̂1(x) − F̂λ(x)
}2

dF̂1(x) ≤

∫ [
{F̂1(x) − F̂λ(x)}2 + v̂ar{F̂λ(x)}

]
dF̂1(x)

= P (λ) ≤ P (λ′) =

∫
1

n1

F̂1(x){1 − F̂1(x)}dF̂1(x) ≤
1

4n1

.

Therefore, as the sample size from Population 1 increases, the mixture of empirical distributions
F̂λ must become very close tôF1 which is known to converge uniformly and almost surely to
the target distributionF1. Recall the heuristic development of Section 2: the MWLE maximizes
the proximity betweenF (x | θ) andF̂λ.

Asymptotic properties of̂Fλ and of the MWLE are developed in Plante (2007). The proofs
require a detailed treatment since standard convergence results do not apply to the MAMSE
weights. In all cases, the heuristic argument above indicates why the MAMSE weights have good
asymptotic properties, despite the fact that we do not assume the proximity of them populations.

8. CONCLUSION

The weighted likelihood is a method that allows one to include relevant information from avail-
able data even if they do not exactly follow the target distribution. The paradigm that we use
throughout this paper has been around for a few years now, butthe absence of an efficient and
reliable method for determining likelihood weights undoubtedly limited its popularity.

In this paper, we suggest a reliable nonparametric method for determining adaptive weights
and we provide an algorithm for calculating them. We then show through simulations that the
MWLE using MAMSE weights often performs better than the MLE. These good performances
hold in an example where the simulated models mimic distributions based on real data.

Plante (2007) studies the asymptotic properties of the MAMSE weights as well as their ex-
tension to multivariate data and censored data. More work could be done in these directions.

The original work of Hu (1994) is based on a paradigm inspiredby smoothing problems
where each datum may have a different weight. Revisiting this paradigm with the heuristic of
Section 2 and the idea of MAMSE weights could be fruitful, especially if we try to link it to use-
ful applications. For instance, Hu & Rosenberg (2000) use such a weighted likelihood to make
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inferences about a process that reaches stability after a certain number of iterations. Their work
is in the same spirit as Hu, Rosenberg & Zidek (2000) where theweighted likelihood is used to
make inferences about dependent data. To extend the MAMSE weights to such situations, we
could create subgroups of the data and see them as populations. Another approach could consist
in using parametric models to infer the cumulative distribution function in the MAMSE criterion
rather than their empirical counterparts. Such extensionsare however left to future work. Mean-
while, we hope that the MAMSE weights will contribute to popularizing the weighted likelihood
so that analysts may take advantage of its ability to borrow strength with minimal assumptions.
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