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Abstract: The weighted likelihood can be used to make inference about one populetien data from
similar populations are available. The author shows heuristically that thentedigikelihood can be seen
as a special case of the entropy maximization principle. This leads him poggdhe minimum averaged
mean squared error (MAMSE) weights. He describes an algorithnafoulating these weights and shows
its convergence using the Kuhn—Tucker conditions. He explores tlierpmamce and properties of the
weighted likelihood based on MAMSE weights through simulations.

Poids empiriques non paramétriques pour la vraisemblance

Résuné : La vraisemblance poree permet de faire de I'iBfence sur une population en incorporant des
donrees issues de populations semblables. L'auteur montre heuristiqueneelat vraisemblance poed

rée peuétre vue comme un cas particulier du principe d’entropie maximale. Ceonlguita proposer les
poids EQMIM (pour erreur quadratique moyennegiee minimale). 1l @crit un algorithme pour le calcul
de ces poids et en montre la convergen@egraux conditions de Kuhn—Tucker. Il explore la performance
et les propretes de la vraisemblance parée bage sur les poids EQMIM I'aide de simulations.

1. INTRODUCTION

The work of Stein (1956) showed that a biased estimate contemes be preferable to the best
unbiased estimate as the biased one may compensate byrfgatsmaller variance than the un-
biased one. The modern terminoldgyrrowing strengths most often used in a Bayesian setting,
but refers in general to attempting to improve precision &ipg data from different sources. The
weighted likelihood is designed to borrow strength whileking minimal assumptions on the
populations that are not of prime inferential interest.

The weighted likelihood that we study in this paper datesnfrihe original work of
Hu (1994), and its enhancements in Hu & Zidek (2002). Thedigm that we consider is a
specific case of theirs that was introduced by Wang (2001 fantider developed in Wang, van
Eeden & Zidek (2004) and in Wang & Zidek (2005). We thus suppbat data comes from
distinct populations that have different yet similar dtattions. More formally, for each fixed
t1=1,...,m,

Xitso Xin, N F
and we denote by; the corresponding density or mass function. Populationdf isferential
interest, but the weighted likelihood

m n;

L) = [T T rexiz 1o/

i=1j=1

lets other populations contribute to the inference so thatrélevant information they contain
is not lost. The density (or mass) functiofi&x | ) form a family of distributions indexed by
6 € © such that there exist®y € © for which f(z|6y) = fi(x). The vector of exponents
X =[\1,...,A\n]" downweights the contribution of the data according to thgrele of similarity
between the populations. The maximum weighted likelihostihreate (MWLE) is a value of
that maximized.  (6).
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Ideally, the weights\; would be determined from scientific knowledge, but usingdssed
weights is more pragmatic. The ad hoc methods proposed by Hidék (2002) as well as the
cross-validation weights of Wang (2001) and Wang & ZidekO&0provide the only adaptive
weights in the literature. None of these solutions is fulljisfactory.

The cross-validation weights, for instance, are flawed btainility problems. The simulation
results in Wang (2001) and Wang & Zidek (2005) can be repredwmnly at the cost of fine-
tuning the algorithms numerically. In the ideal situatiohese some of the populations are
identical to Population 1, the cross-validation weightymat even be defined.

Different methods allow one to borrow strength from othepuydations. Such methods typi-
cally rely on hierarchical models involving the— 1 populations that are not of prime inferential
interest. Hierarchical models are primarily used in a Bayesetting, which means that prior
distributions for the hyperparameters must also be deterni

Efron (1996) develops an empirical Bayes method under afgareakin to ours where one
population is deemed of prime interest. While he determimespfrom the data in his work,
the necessity of choosing a common model for all populatian®rder to link them through
hyperparameters) is not waived. By comparison, the weiglkelihood with the weights that
we propose does not assume that the data follow a common midukelveights adapt, keeping
the populations that are sufficiently similar to our targistribution, and dismissing the ones
that are too different. The absence of parametric assungpfexcept for the population of prime
interest) may be a major advantage in situations where noaiatr reliable hierarchical models
are available, or when one is not completely comfortablé wibdeling the external populations.
Being nonparametric, our weights are not subject to mods$peicification.

It will become clear from the argument in Section 2 that thégited likelihood is most use-
ful when a mixture of the data from Populatidn . ., m is close to the target distribution. Such
situations arise naturally in practice. Suppose, for msathat previous studies based on gen-
der, race, or other demographic variables, are availablerdnce on the global population could
be complemented by data from all the specific groups. Whenlatpus are likely to be similar,
whether they come from adjacent geographical regions oradpulations, the weighted likeli-
hood is also likely to produce good results since any migufethe populations will naturally
be close tar.

In Section 2, we heuristically derive the weighted likelldofrom Akaike’s entropy maxi-
mization principle. That development justifies the forntigla of the MAMSE weights that we
define formally in Section 3. Section 4 presents some inmedgroperties of the MAMSE
weights. An algorithm for computing these weights is praabs Section 5: we use the Kuhn—
Tucker sufficient conditions to show that it yields the dedisolution. Simulation results appear
in Section 6 where the performance of the MWLE with MAMSE weggls explored for dif-
ferent plausible scenarios. Finally, the asymptotic bahrasf the MAMSE weights is briefly
discussed in Section 7 and concluding remarks are in Se8tion

2. HEURISTIC JUSTIFICATION OF THE WEIGHTED LIKELIHOOD

Consider first the one-sample situation wherimdependent data poinig, . . ., Y,, come from
a distribution whose unknown and unknowable density(ig. In his pioneering work, Akaike
(1977) argues that the goal of inference should be the estimef g(y). When a parametric
modelf(y | ) is to be used, Akaike proposes maximizing the relative @gtro

B 9(y) 9(y)
B(g’f)/ﬂyw) log{f(y9)

The relative entropy is in fact minus the Kullback-Leibléradgence betweelfi andg. In that
case, it is a measure of the proximity of the distributignandg. The expression foB(g, f)

}f<y 16)dy.
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can be further simplified

B(g, f) = —/log{ f?;%)}g(y) dy = /10g{f(y|9)}g(y) dy—/log{g(y)}g(y) dy

In particular, when the objective is to maximizg, f) as a function of), the last term of the
rightmost expression can be ignored since it does not depefd

Calculating the entropy would require the knowledge of thknown and unknowable true
distributiong. We thus have to estimate it. Let

%Z (Y; <)

be the empirical distribution function of the data ¥&t. ..,Y,,. The indicator variabldL( - ) is
equal to one if all the elements of its argument are true, audldo 0 otherwise. UsingdG(y)
as an approximation tdG(y) = ¢(y) dy yields

/ log{£(y] 0)} dG(y) Zlogf (v; 1),

the log-likelihood! Therefore, calculating the likelihd@ equivalent to calculating the entropy
where the true distribution is estimated by the empiricatriution of the data. Hence, the
maximum likelihood estimate can be seen as a special cas&aikeéls entropy maximization
principle.

Consider now then-population paradigm of Wang (2001) introduced earlierthéppro-
priate weights, the mixturé’ = > \;F; can be arbitrarily close td}. Let F; denote the
empirical distribution function based on the sample frompydationi. The weighted empirical
distribution function, written

m m
F\}\ = Z)\lﬁl with X; >0 and Z/\l =1,

i=1 i=1

calledrelevance weighted empirical distributidny Hu & Zidek (1993), may use more data than
Fy, and thus be less variable. Hu & Zidek (1993) note the impbés involved in defacto
replacing F; by F, but do not investigate as we do here the possibility of rgdiias for
precision.

In the context of maximum entropy, consider using the weidtgmpirical distribution func-
tion as an estimate df;. Then,

m m

/1ogf(a:|9 dFy(z Z)\ /logfx|9)dF Z Zlogf Xi;10),

the weighted log-likelihood! The maximum weighted likeliid can thus be derived from
Akaike’s entropy maximization principle.

Based on the heuristics above, a good choice of weights diguio make]%\ close toF.
The criterion for determining weights presented in the sextion is to try to achieve that goal.
As a consequence, the weighted likelihood should be edfyeaiseful in situations where a
mixture of the distributions of populatiors ..., m is very similar to the target distribution.
Such situations are not suitable for a hierarchical modetkvassumes that all data follow a
common distribution whose parameters are allowed to diften one group to another.
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3. MINIMUM AVERAGED MEAN SQUARED ERROR WEIGHTS
Let us now turn to the central proposition of this paper, te#énition of nonparametric adaptive
likelihood weights.

As a prescreening step, samples that do not overlap witle thidBopulation 1 are discarded
by setting their weights to zero. For simplicity, the natatibbelow does not reflect the pos-
sibly reduced number of populations considered: we supiiwden populations remain after
prescreening.

The heuristics in Section 2 suggest that the maximum weiglitelihood estimate (MWLE)
could perform well |fF>‘ were close td?; but would be less variable. These two requirements
are combined in the objective function

PO = [ [{(Fi@) - @) + s F(@)] dFa (o),

where the substitutions
var{ Fy(z)} = Z)\Qvar{F )} and var{F(z)} = _E(I){yﬁ(x)}

are based on the distribution of the random variat;@-(x) that follows a binomial distribution
for any fixedz.

We call the minimum averaged mean squared error (MAMSE) kisig vector of values
A= [A1,...,An]T that solves the program

minimize P(\)
subjectto{\; >0, i =1,...,m} andz A = 1.

The name MAMSE comes from the resemblance of the integratidtheé mean squared error
(Bias® + Variance).

4. STRUCTURAL PROPERTIES

Choosing the empirical distribution function to define thAMSE weights implies some invari-
ance properties that are discussed next.

THEOREM 1. The minimum averaged mean squared error weights are inmat@a strictly
increasing transformation of the data.

Proof of Theorem 1Let X;; = ¢(Y;,) whereg is a strictly increasing function of the real line.
Let H; denote the cumulative distribution function Bf;. Then for ally, z = ¢(y) and any
t=1,....,m

i) = Y Y Sgh = > M) < glo)

1 & ~
ng <
Jj=1

SinceP() is integrated with respect tdF}, a discrete measure, there is no Jacobian of trans-
formation in the integral and replacing dl} by the correspondingf; will not change the ex-
pressionP (), nor its maximum. O
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THEOREM 2. The minimum averaged mean squared error weights do not depretthe para-
metric modelf (x| #) used in the weighted likelihood.

Proof of Theorem 2The result follows immediately from the definition of the MA® weights
and the choice of the nonparametric empirical distribufiorctions as estimates éf. O

THEOREM3. The maximum weighted likelihood estimate (MWLE) based nimmaim averaged
mean squared error (MAMSE) weights is invariant under a tmene reparameterization of

f(z|6)intog(z|T) = f{z|h(r)},ie. 0isa MWLE iff is a MWLE.
Proof of Theorem 3By Theorem 2, the MAMSE weighta* = [A%,..., A% ]T are invariant to

the choice of parametric modg(z | 6). If 7 is such that = h(7) andh is a one-to-one mapping
of the parameter space, thep. is such that

m  n; m  n;

TTTT #0017 < TT T A0 | Arma) 1/

i=1j=1 i=1j=1
for all 7 if and only if 0,,ax = A(7Tmax) IS Such that

m  n; m n;

H H f( X5 | Q)Af/m < H H F(Xy | emax))\f/ni

i=1j=1 i=1j=1
for all 6. Hence, the MWLE possesses the same functional invariaopefy as the maximum
likelihood estimator (MLE) if we use the MAMSE weights. O
5. COMPUTING THE MAMSE WEIGHTS

Substitutingh; = 1 — >°", A; allows one to embed the constrait’", \; = 1 into the
objective functionP(A). Let us write

A var{Fy(z)} 0 Fi(z) — Fy(z)
A=| |, V(@)= , Flz) = :
Am 0 var{ Fpn ()} Fi(z) = Fn()

Then, the functiorP(A) can be written as

P(A) = /{ﬁl(x)—é)\iﬁi(:r)—(1—%)\1-)1?1(:6)}2

=
(1= A1) F (o)) + i Nexar{ By (o)} | dF ()
_ / AF@P + (- 241+ AT @ Fr (@)} + AT V()R] dF @)
_ / )T+ V() + 1175 {F (2)}] A
a1 var{ﬁl (2)} + var{Fy (x)}] dF (z)
= AAA-2A"15 40 (1)

where

A = /[}'(x)}'(:r)T +V(z)+ IIT@{ﬁl(x)}} dF (z),

o= / (B ()} AP (x).
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Hence, the minimum of’(\) without the constraints; > 0 is the solution to the equation
AX = b1. To ensure the weights are nonnegative, we apply the fatigwaigorithm and denote
its solution byA* (or X").

1. Solve the equatioAX = b1;

2. if all the weights obtained are nonnegative, stop. Otismwset the negative weights to 0,
ignore the corresponding samples and repeat from Step lthétheduced system. The
weight allocated to Population 1 from Step 1 cannot be negéiee the proof of Lemma 4
for details). If no other samples are left, thern= 0 and\; = 1.

The objective functionP(\) is quadratic and positive (thus convex). Since the comggai
form a convex set, intuition suggests tidt should be the global constrained minimum. Next
we prove this more formally.

Consider the generic program

minimize P(\)
subject toh(\) < 0,

whereX € R™ andh(X) = [h1(X), ..., hi(X)]T is a vector of functions, each being froni'R
to R. Let VP(A) denote the gradient d? andP () its Hessian. The same notation applies
to h;(A), Vh;(A) andH; (A). By definition, anm x m matrix B is positive definite (noted
B = 0)if y"By > 0forally € R™\{0}. The Kuhn-Tucker conditions (see, for instance,
Luenberger 2003, p. 316) are as follows:

KUHN—TUCKER SECOND ORDER SUFFICIENCY CONDITIONd ethq, ..., h, andP be contin-
uous and twice differentiable functions frdRi” to R. Sufficient conditions that a poitt* be a
strict relative minimum point of the program above are thre existgs = |1, ..., ux]" € R”

such thatu > 0, " h(X*) = 0,

k

VP(A") + > piVhi(A*) =0 (2)
i=1
and the matrix
k
P(A") + > wiH;(A") - 0. (3)
=1

Note that from Equation (1), we ha%P(\) = AX—1bandP(\) = A. The functionP(\)
and its derivatives do not depend ansince it was replaced by, =1 — 1T X. Consequently, it
is implicitly understood in the following thaP andh; are functions of € R™~!, even when
we write P(X) andh; () rather thanP(X) andh; (\).

LEMMA 1. The Hessian matri® (\) is positive definite.

Proof of Lemma 1Remember that

A= / [F(2)F(2)T + V(2) + 117var{ Fy (2)}] dFi ().

For any fixedr, each term of the integrand as written above is nonnegagifimitk. In particular,
foranyy € R™~*\{0},

vy {F(a)F(2)" + 117v@{Fy (z)} }y > 0.
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The prescreening that we applied before optimizing\) ensures that all remaining samples
overlap with that of Population 1. Therefor&r{F;(x)} > 0 for at least one of theX,,,
j=1,...,n and thus

/ ar{Fy(x)} dFy (z) > 0.

Consequently, the diagonal elements(d¥ (x) dﬁl(x) are strictly positive, which means that

m—

y7 Vv(x) dﬁl(x)]y = Zlyf U@{E(x)}dﬁl(x) >0

i=1

for anyy € R™'\{0}. Thereforey"Ay > 0, i.e., the Hessian oP, P(\) = A, is positive
definite. O

COROLLARY 1. Equation(3) is satisfied.

Proof of Corollary 1.1n our implementation of the general Kuhn—Tucker condgidn () =
—Ai+1. ThereforeH;(\) 2 VTVth(A) = 0 are null matrices. From Lemma 1, we know that

P(\") is positive definite, hence Equation (3) is satisfied. O
Applying the algorithm above will change negative weiglata.t, ; = 0 for somei € 1€ C
{1,...,m — 1} whereI® may be null. The sef contains the remaining indices and may also

be null.

LetJ C {1,...,m — 1} be a possibly null subset of indices, thép ; is the submatrix ofA
for the rowsi € I and the columng € J. We define the subvectox; similarly.

The proposed algorithm involves solving reduced systenmerathe rows and columns for
i € 1¢ are excluded. The system of equations that has to be soleadrtolves the matrix

A = / [Fi(2)Fr(z)T + Vi r(z) + 11]var{Fi (z)}] dF (2).

For convenience of exposition, suppose that the order aéaapce of the,; in X is such that
all the \; that are “forced” to be zero are last. Then, with

.7:[(.%')
Flx) = |-men ;
( ) Fre (CL’)
we can write
B T
_ f[(l‘) f[(l‘) T 5 ~
A = | |-t et V(z) + 11" var{Fi(z dFy(x
/ ol e IR RR BN R
_ /'ﬂ@vﬂxfwmxxfr@ww fffffffffff
I Fre(x)Fr(x)T  Fre(2)Fre(z)T + Ve ro(x)

A A
AIC,IiAIC,IC .

In particular,A; = A; ; andA;ec = Aje jo. Therefore, the last step of the proposed algorithm

is to solve the system of equatioyLsXI = AML = 1;b. Note that this implies that the matrix
Aj need not be recalculated at each step of the algorithm.
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LEMMA 2. If I® # () andy € R™~'\{0} is any nonnegative vector wigy = 0 andy ;¢ > 0,
thenVP(A*)Ty > 0.

Proof of Lemma 2.First note that the expressidi P(A*)Ty corresponds to the directional
derivative of P at A* in the directiony. Next consider the unit vectar; ¢ R™~! whose
ith element is 1. Foi € I¢, the global unconstrained minimum of the convex functiois
outside of the half-spack;,; > 0. Therefore,P increases in the directios; at A* and thus
VP(/\*)Tei > 0.

Finally, the hypothesized vectgrcan be expressed as a linear combination of vedters
i € I¢} with nonnegative coefficientg. Therefore,

VPA)Ty = > 4 VP(A")Te; > 0. O

iel®
AlthoughI = 0 or I¢ = () may occur, the following proofs hold under these speciaésas

LEmMMA 3. The proposed algorithm solves the quadratic program

minimizeP(\)
subjectto{\; > 0,i=2,...,m}.

Proof of Lemma 3.To verify that the Kuhn—Tucker conditions are satisfied} firste that for

1 =1,...,m — 1 the functionsh;(A\) = —\;1; are continuous and twice differentiable. The
quadratic objective functiof?(A) shares the same smoothness properties. Moreover, Cgrbllar
establishes that Equation (3) holds.

At termination, the algorithm yieldé\; > 0 and 5\;0 = 0. The proposed solutioA™ is
thus in the feasible set. It remains to show that there eaigtghat satisfies the Kuhn—Tucker
conditions stated earlier. We will show that = V P(\*) satisfies the required properties.
Expression (2) can be written

VP(A) + mzlmvei) = VP(A") ~p=0
=1
and clearly holds fop = V P(X*). The other Kuhn-Tucker conditions require that> 0 and
uT;\* =0.
p=0.
The last step of the algorithm before termination is to sédlye \; = 1;b. Therefore,
p; = VP = [AX —10], = A A, + AL e e —1;6=0

sinceA;c = 0.
In addition, we have from Lemma 2 that = u'e; = VP(A\*)e; > 0 foralli € I¢, and
henceu;c > 0. Thereforepy > 0.

uTj\* =0.

We can write the conditiop™A" = 0 aspuTA; + p]eAre = 0. Itis shown above that; = 0,

henceu] A; = 0. Moreover, the definition of the sétimplies thath;c = 0, thuspJeAjc = 0
and the condition is satisfied.

Consequently, the solution found by the proposed algoritherstrict relative minimum since
it satisfies the sufficient Kuhn—Tucker conditions. O
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LEMMA 4. The solution found by the proposed algorithm also satisfiestditional constraint
Yo, A < 1, or equivalentlyA; > 0.

Proof of Lemma 4The solution found by the algorithm satisfiés ;\; = 1;b. ExpandingAr
in this equation yields

{ / [F1(2)Fr(z)T + Vi 1(x) + 11]var{F (2)}] dFy (x)} ;= 1;b.

By subtractingElll}S\; from both sides and multiplying the resulting equation)th on the
left, we have

b [/{ff(x)ff(a:)T +Vir(2)} dﬁ(m)} Ay = bAT (1 — 1,1TA)

= bA;Tll(l —17A)) = b(l - Z)‘;’kﬂ»l) (Z )‘:4—1)-
iel el
By the same argument as in the proof of Lemma 1, the matrix eretth hand-side is positive
definite, and hence the expression itself is positive. Sinmdﬂj are positive, we necessarily
havel — > . ; Ai;; > 0. Hence, the solution to the program in Lemma 3 always satitffie
additional constrainp_~, ., \¥,; = Y7, AF < 1 (remember thak;c = 0). This inequality is
equivalent ta\} > 0.

Regarding the comment to the effect thatcannot be negative for intermediate steps, con-
sider the development above for such steps whenmmay still contain negative values. Note that
the left-hand side of the expression is still positive besesaf its positive definiteness. Moreover,
the right-hand side can be written ag(1 — A;)b, which means thah;(1 — ;) is positive.
Therefore \; € (0,1), except ifl = () in which case\; = 1 and\ = 0. O

THEOREM4. The proposed algorithm solves the quadratic program
minimizeP(\)

subjectto{\; >0, i =1,...,m} and Z)\i =1.
1=1

Proof of Theorem 4The result follows from Lemmas 3 and 4. O

6. SIMULATIONS
In this section, the finite-sample performance of the MWLBMMtAMSE weights is evaluated
through simulations. Different cases of interest are aersid.

The number of repetitions for each simulation study vaniemf10000 to 40000. We used
the bootstrap on a pilot simulation to evaluate the variighilf the values presented throughout
this section. Unless otherwise stated, the standard dmviat the error due to simulation is less
than one unit of the last digit shown.

6.1. Two normal distributions.

We first explore the merits of our weights for the ubiquitowsmal distribution. Samples of
equal sizes are drawn from

Pop. 1: N(0,1), Pop. 2: N(A, 1)

for different values ofA, each scenario being repeated 10000 times. Table 1 shovasdhage
MAMSE weights under different circumstances.
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TABLE 1: Average MAMSE weights for Population 1 when equal samples ofrsare drawn from
normal distributions with unit variance and means 0 ancespectively. The results are averages over
10000 replicates.

Average values of00\;

n=5 10 15 20 25 50 100 200 1000 10000

A=0 72 71 72 71 71 72 72 72 72 72

0.001 72 71 71 72 72 72 72 71 72 72
0.01 72 72 71 72 72 72 72 72 72 74
0.10 72 72 73 73 73 73 74 76 86 98
0.25 74 74 75 76 76 79 83 88 97 100
0.50 77 79 80 82 83 88 93 96 99 100
0.75 80 83 86 88 89 94 97 98 100 100
1.00 84 87 90 92 93 96 98 99 100 100
1.50 89 92 94 95 96 98 99 99 100 100
2.00 93 94 96 97 97 99 99 100 100 100

From Table 1, we notice that the average weight of Populdtidnes not seem to go below
0.7 for these scenarios. Asincreases, the weight of Population 1 approaches 1, hemce th
MAMSE weights detect that the distributions are differemd alltimately discard Population 2.
Note that this convergence to 1 does not seem to occukfer( and seems very slow whek
is tiny. The average weight for Population 1 increases abwiadn the discrepancy between the
populations increases whileis kept fixed.

Table 2 shows the performance obtained for the MWLE with MAM&&ights when com-
pared to the MLE. The ratio of the mean squared errors, 100 (MEE)/MSE(MWLE) is
shown; a value greater than 100 means that the MWLE is prééerdihis ratio is akin to the
relative efficiency of the MLE with respect to the MWLE.

TABLE 2: Relative efficiency as measured by 100 MSE(MLE)/MSE(MWLEMBkes of equal size are
simulated from normal distributions with unit variance and means ®anekpectively. The results are
averaged over 10000 replicates.

Efficiency of the MWLE

n=5 10 15 20 25 50 100 200 1000 10000

A=0 146 145 144 144 143 143 144 144 144 143
0.001 147 146 145 144 143 143 142 143 143 144
0.01 146 146 145 144 143 143 144 143 141 127
0.10 143 143 142 140 139 135 128 118 89 94
0.25 139 134 131 125 123 110 96 87 91 99
0.50 127 117 108 104 97 88 88 90 97 100
0.75 114 103 95 91 89 87 91 95 99 100
1.00 103 94 90 88 88 90 94 97 99 100
1.50 89 88 89 91 91 94 98 98 100 100
2.00 84 87 91 92 93 96 98 99 100 100
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The MWLE performs better than the MLE for smallandA. Whenn and A increase, the
two methods eventually perform equivalently. For the casdmtween however, the MLE is a
better choice than the MWLE. Fortunately, the loss (at mo%t)l€eems to be smaller than the
potential gain (up to 47%). When the two populations are idahta steady improvement of
about 43% is observed. Note that we cannot expect to improifermly over the MLE since
the mean is an admissible estimator.

The weighted likelihood could be especially useful in sita@s where a large population is
available to support a few observations from the populationterest. For the next simulation,
40000 replicates of each scenario are produced with the sameal distributions as before,
but with samples of size and 10n for Population 1 and 2 respectively. Table 3 shows the
average weight allocated to Population 1; Table 4 showsdlagive efficiency of the methods as
measured by 100 MSE(MLE)/MSE(MWLE).

TABLE 3: Average MAMSE weights for Population 1 when samples of sizad10n are drawn from
normal distributions with unit variance and means 0 Anckspectively. The results are averages over
40000 replicates.

Average values of00\;

n=5 10 15 20 25 50 100 200

A=0 51 50 49 49 49 49 49 48
0.001 51 50 49 49 49 49 49 48
0.01 52 50 50 49 49 49 49 49
0.10 54 53 52 53 53 54 57 62
0.25 58 59 60 61 62 69 78 86
0.50 66 70 73 76 79 87 93 96
0.75 74 79 83 86 88 94 97 98

1.00 80 86 89 91 93 96 98 99
1.50 87 92 94 95 96 98 99 99
2.00 91 94 96 97 97 99 99 100

The general behavior of the weights is similar to that in thevjpus simulation, except that
their minimal average value is below 0.5 this time around.aA®nsequence of its larger size,
the sample from Population 2 gets a heavier weight.

It appears that a larger Population 2 magnifies the gainsssetoobserved previously. For-
tunately however, the magnitude of the further improvemeetm to exceed that of the extra
losses.

Note that the MAMSE weights are invariant to a common tramsédion of the data in all
populations. Therefore, simulation results would be igahiless simulation error) for normal
populations with variance? and with means 0 anto respectively.

Overall, the MWLE works very well under the suggested scesari

6.2. Complementary populations.

We explained in Section 2 how the likelihood weights can lenses mixing probabilities. Can

the MAMSE weights detect and exploit the fact that Poputafichas the same distribution as a

mixture of some of the other populations? Would the qualitshe inference then be improved?
Pseudo-random samples of equal sizese drawn from the distributions

Pop. 1: N(0,1), Pop. 2: [N(0,1)|, Pop. 3: —|N(0,1)]
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where| - | denotes absolute values. Hence Population 2 has a halfahalistribution and
Population 3 follows the complementary distribution.

TABLE 4: Relative efficiency as measured by 100 MSE(MLE)/MSE(MWLEM$Ees of sizes, and10n
are simulated from normal distributions with unit variance and means Qamgpectively. The results are
averaged over 40000 replicates.

Efficiency of the MWLE

n=5 10 15 20 25 50 100 200

A=0 223 223 223 222 222 221 222 221
0.001 223 225 223 221 222 223 221 220
0.01 223 222 222 220 221 221 220 218
0.10 216 209 203 197 191 169 142 113
0.25 187 165 147 135 125 100 83 78
0.50 139 111 97 90 85 79 83 89
0.75 111 91 8 82 82 85 90 94

1.00 98 85 84 83 8 90 94 97
1.50 88 86 88 89 90 94 97 098
2.00 86 89 91 92 93 96 98 99

We consider different sample sizes, each scenario beirgateg 10000 times. The results
are summarized in Table 5. The first column shows 100 MSE(VMEE(MWLE); the other
columns show the average MAMSE weights allocated to eadhedthiree populations.

First observe that the combined average MAMSE weight of Raioms 2 and 3 accounts for
at least half of the total weight for all sample sizes. The M3B&lweights thus detect that an
equal mixture of Populations 2 and 3 share the same distiibas Population 1. Note also that
the relative efficiency is uniformly greater than 100, whickans that the MWLE with MAMSE
weights is preferable to the MLE in these situations.

TABLE 5: Relative efficiency as measured by 100 MSE(MLE)/MSE(MWLE) anerage MAMSE
weights allocated to samples of sizesirawn fromN(0, 1), [N(0, 1)| and—|N(0, 1)| respectively. The
results are averages over 10000 repetitions.

n  Efficiency 100\; 1002 100X3

5 115 50 19 30
10 121 46 23 30
15 120 46 25 29
20 118 45 25 29
25 118 45 26 29
50 117 45 27 28

100 116 44 27 28
200 116 44 28 28
1000 115 44 28 28
10000 116 44 28 28

The columnEfficiencyshows 100 MSE (MLE)/MSEW (MWLE); the average MAMSE weights
allocated to each of the three populations appears in thez ottlumns.
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6.3. Negative weights.

In most cases, the unconstrained optimizatiodP¢A) yields positive weights. In some cases
such as the one that we are going to explore, negative wesgbtsmatically occur. Some previ-
ous work such as van Eeden & Zidek (2004) showed that allowatgtive weights may some-
times boost the performance of the MWLE. We explore the pdggibf such improvements
here.

n=75 n= 10 n= 15 n= 20 n= 25 n= 50 n= 100
47 46 46 45 45 45 45
A=0.00 50 50 50 50 50 50 50
4 4 5 5 5 5 5
47 46 46 45 45 45 45
0.001 50 50 50 50 50 50 50
4 4 4 5 5 5 5
47 46 46 45 46 45 45
0.01 50 50 50 50 50 50 50
3 4 4 5 5 5 5
48 47 47 47 47 47 48
0.10 50 50 50 50 49 50 50
3 3 3 4 4 3 2
50 49 50 50 50 52 55
0.25 49 50 50 50 50 51 53
1 1 1 0 -0 -3 7
53 54 55 55 56 60 63
0.50 50 51 52 52 53 55 57
3 5 6 8 9 15 21
60 60 61 62 63 65 66
1.00 51 57 59 60 60 63 65
11 7 20
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FIGURE 1: Average values of00x the MAMSE weights without the constrainks > 0. Samples of size
n, 10n andn are taken from each population. Population 2 is an equal mixture of Rmdd. and 3 that
respectively follow aN(0, 1) and aN(A, 1) distribution. All results are averages over 40000 repetitions.

Imagine a situation where a measurement of interest is thelgained, but it is costly to
determine whether a patient is diseased or not. We want tly she measurement of interest
on the diseased patients. Suppose we have two small samplesliseased, one not) as well
as a larger sample where the health status of patients isoumknif we allow negative values
for MAMSE weights, would they adapt by including the largepplation in the inference and
allocating a negative weight to the small healthy popuretio

To represent the hypothetical situation above we simutata the following distributions:

Pop. 1: N(0,1), Pop. 2: 0.5N(0,1) +0.5N(A,1), Pop.3: N(A,1),

where Population 1 and 3 have equal sample sizes, dfut Population 2 has a sample size
of 10n. Each scenatrio is repeated 40000 times.

Although we allow weights to be negative, we still apply thegrocessing step and set the
weight of a population to 0 when it does not overlap with thegle from Population 1. If
the preprocessing were ignored, a nonnegative definieuld occur occasionally, and then the
MAMSE weights would not be unique.

Applying the preprocessing does not affect the pertinehtd@®example: if the distributions
in the populations of diseased and healthy are so diffetaitthe samples are often disjoint,
there is no point in using the weighted likelihood to incli®gpulation 2 as the measurements
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are in fact a cheap diagnostic test. Moreover, previouslsitioas without preprocessing yielded
results that are not better than those presented here.

Figure 1 shows the average values of the unconstrained MAM&ghts for different sce-
narios. Negative weights do appear, hence the MAMSE aritedietects that Population 2 is a
mixture of the other two populations and removes the compiorbich is not of interest.

For a largeA, notice how the negative weights are closer to 0 for smallerdes. In such
cases, there is a higher probability that the sample fronuRtipn 3 will be disjoint of the sample
from Population 1. As a result, the weight allocated to Pafoih 3 is more often forced to 0 by
the preprocessing step. As the sample sizes increase nipdesaoverlap more frequently.

Table 6 shows the performances obtained by the MWLE with usicaimed MAMSE
weights. The MWLE performs better than the MLE in most casemdalmost twice as good in
many cases. Unfortunately, the performances for laxgare very poor, especially in the cases
where the difference between the populations is so largettbg overlap only slightly.

TABLE 6: Relative efficiency as measured by 100 MSE(MLE)/MSE(MWLE) wtree MAMSE weights
are calculated without the constraitks> 0. Samples of size, 10n andn are taken from each
population. Population 2 is an equal mixture of Populations 1 and 3 thaaisgy follow aN(0, 1) and
aN(A, 1) distribution. All results are averages over 40000 repetitions.

100 MSE(MLE)/MSE(MWLE)

n=5 10 15 20 25 50 100

A=0 195 196 197 198 197 197 198
0.001 196 196 197 197 198 198 197
0.01 196 196 197 197 198 198 197
0.10 195 194 194 194 192 184 172
0.25 190 182 176 170 165 144 121
0.50 173 153 140 131 124 107 97
1.00 137 113 105 101 100 97 96
2.00 116 92 86 84 84 84 84
5.00 51 49 51 54 57 62 55

Using a weighted likelihood with negative weights proviéesimprovement over the MLE,
but a similar improvement may be obtainable when the canstrare enforced. Table 7 shows
the performance of the MWLE when the usual MAMSE weights aedug-igure 2 shows the
average values of the weights obtained in that case. UstngI¥WLE with positively constrained
MAMSE weights also provides an improvement over the MLE sTiiprovement is sometimes
larger than that obtained with unconstrained weights. Boealh between the two versions of
MAMSE weights, Table 8 compares their relative efficienaiues above 100 favor the uncon-
strained weights. Note that the standard deviation of thar elue to simulation in Table 8 can
be more than one unit, but does not exceed 1.3 units.

It seems that allowing negative weights further improves plerformances only in a few
cases. In fact, Figure 2 shows that Population 2 by itselfteansed and Table 7 shows it has a
positive impact. Table 8 suggests that the constrained MEMSights are to be preferred more
often than not. If we consider other complications thateaftem allowing negative weights,
(e.g., making the weighted empirical distribution funaotimnmonotone) keeping the constraints
A: > 0 in the definition of the MAMSE weights seems a better option.

A different prevalence of the diseased in Population 2 caiffiect the simulation results. If
major differences were observed, the conclusion aboveldmitevisited.
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FIGURE 2: Average values of00 x the usual MAMSE weights (with constrainkts > 0). Samples of size
n, 10n andn are taken from each population. Population 2 is an equal mixture of Rmmdd. and 3 that
respectively follow aN(0, 1) and aN(A, 1) distribution. All results are averages over 40000 repetitions.

TABLE 7: Relative efficiency as measured by 100 MSE(MLE)/MSE(MWLE) wttee usual MAMSE
weights (i.e., constrained to positive values) are used. Samples of,si2e andn are taken from each
population. Population 2 is an equal mixture of Populations 1 and 3 thaatsgy follow aN(0, 1) and
aN(A, 1) distribution. All results are averages over 40000 repetitions.

100 MSE(MLE)/MSE(MWLE)

n=5 10 15 20 25 50 100

A=0 211 209 210 210 209 208 208
0.001 212 210 209 209 210 209 208
0.01 212 210 210 209 210 209 208
0.10 212 209 207 206 203 194 180
0.25 207 196 187 180 173 146 118
0.50 186 161 144 131 122 98 82
1.00 139 111 97 89 86 79 82
2.00 97 82 79 78 79 84 90
5.00 51 48 50 53 57 68 79
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TABLE 8: Relative efficiency of the MWLE with and without the constraihis> 0 as measured by 100
MSE(constrained MWLE)/MSE(unconstrained MWLE). Samples of 8iz€)n andn are taken from
each population. Population 2 is an equal mixture of Populations 1 and @#pectively follow aN(0, 1)
and aN(A, 1) distribution. All results are averages over 40000 repetitions.

100 MSE(constrained)/MSE(negative)

n=5 10 15 20 25 50 100

A=0 92 94 94 94 95 95 95
0.001 92 93 94 94 94 95 95

0.01 92 93 94 94 94 95 95
0.10 92 93 94 94 94 95 96
0.25 92 93 94 95 096 98 102
0.50 93 95 98 100 102 109 119
1.00 99 102 109 114 117 123 117

2.00 119 112 109 107 107 100 94
5.00 100 101 102 102 101 91 69

6.4. Earthquake data.

We now use a model whose weighted likelihood estimate doekawe a simple form, i.e., itis
not a weighted average of the MLE of each population.

Natural Resources Canasta://earthquakescanada.nrcan.gc.ca/ maintains an educational web-
site with resources about earthquakes. From their welisisepossible to download data about
recent western Canadian earthquakes. The histograms umeF8ggshow the magnitude of the
earthquakes that occurred in the 5-year period from 12 RBepr2001 to 12 February 2006.
Events are divided into 3 groups depending on the geograploication of their epicenter. For
the purpose of this example, we make the assumption that #gmitndes of the earthquakes
are independent random variables and fit a gamma distribtdi@ach of the three populations
using maximum likelihood. The fitted curves appear on Figlignd the estimated values of

their parameters are shown in Table 9 along with the numbebsgérvations in each area. The
gamma model is parametrized as

s
flz] B, p) = 1“?5:) T

for 8, u, z > 0.
TABLE 9: Number of earthquakes in three areas of western Canada bet@&ebdiary 2001 and 12

February 2006. The magnitude of these earthquakes is modeled bynaagdistribution; the maximum
likelihood estimates appear below and are used as the “true” paranwatérs fsimulation.

Lower Mainland — Elsewhere in BC Yukon and
Vancouver Island or in Alberta North West Territories

164 1.654 2.357 6.806
" 1.437 1.869 2.782

n 4743 4866 1621
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Lower Mainland - Elsewhere in British Columbia Yukon and
Vancouver Island or in Alberta North West Territories
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FIGURE 3: Histograms of the magnitude of earthquakes measured betweetd&fe2001 and 12
February 2006 for three different areas of western Canada. tfvescorrespond to the fitted gamma
density.

We focus our interest on the magnitude of the next earthquatkeepicenter in the Lower
Mainland — Vancouver Island area. Suppose that only the 56 negent events from each of
the three regions are available. Would the MWLE that usesfdata all three regions provide
a better estimate than the MLE? To investigate the questieproduce 10000 pseudo-random
samples of earthquakes based on the fitted gamma models showe.

The average MAMSE weights are 0.959 for the Lower Mainlandardduver Island area,
0.041 for the rest of British Columbia and Alberta and finatigarly 0 for Yukon and North West
Territories. Although it looks like a small contributiorhe MSE of the MWLE for the vector
(8, 1) was smaller with 100 MSE(MLE)/MSE(MWLE)=107.

We also considered other values of possible interest, naswehe probabilities about the
magnitude {/) of the next earthquake that are all obtained by pluggingMh& or MWLE in
the gamma model. Table 10 summarizes these results.

TABLE 10: Efficiency in estimating some probabilities about the magnitude of thiesaethquake in the
Lower Mainland — Vancouver Island area followed by the average dcd¢heal estimates and their true
values. Efficiency is measured by 100 MSE(plug-in MLE)/MSE(plug-WN\E). The following four

columns contain different probabilities that must be multiplied by the cporeding multiplier.

Prob Efficency MLE MWLE Model Data Multiplier
P(M >1) 123 62 63 68 51 x1072
P(M > 2) 114 22 24 40 22 x107?
P(M > 3) 112 66 73 174 98 x1073
P(M > 4) 113 19 21 51 26 x107?
P(M > 5) 112 51 59 99 53 x107*
P(M > 6) 80 14 17 12 6 x107*

The columrEfficiencyof Table 10 corresponds to the relative efficiency of usirgNtWLE
compared to using the MLE as plug-in parameters for the gamotdel in order to evaluate the
probability of interest. The numbers shown are 100 MSE(ituILE)/MSE(plug-in MWLE)
followed by the estimated values &f(M > k) using the MLE and the MWLE as plug-in
parameters. For comparison purposes, the coluvodelandData contain respectively the true
probabilities (from the simulated model) and the empirfalportions in the complete data set.
All probabilities are scaled for easier reading; using tberesponding multiplier will yield the
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original value. Note that discrepancies with the empirprababilities reveal weaknesses of the
gamma model to perfectly represent the magnitude of eaategurather than an advantage for
one method over the other.

Interestingly enough, the MSE of the estimates is almosagdvsmaller with the MWLE.
Improved performance is hence possible by using the MWLE WMIHMSE weights in this
situation with distributions copied from real life.

7. ASYMPTOTIC PROPERTIES

Because they are calculated from the data, the MAMSE weayktseandom variables. Hu (1997)
proves the weak consistency and the asymptotic normalitiyeomaximum weighted likelihood
estimate, but his results hold only for fixed weights, i.eeights that may depend on sample
sizes, but that are not random variables.

For the case of adaptive weights such as the MAMSE weighthduwork has been done by
Wang, van Eeden & Zidek (2004). They prove the consistendyrammality of the maximum
weighted likelihood estimate under the assumption thatvights shift entirely to the popula-
tion of interest, i.e.A — [1,0,...,0]T, at a specified rate as the sample sizes of all populations
go to infinity. The simulations of Section 6 seem to indicdtat the MAMSE weights do not
behave that way. When a mixture of the additional populatisridentical to the target, the
weights are shared between these populations even forarge $ample sizes.

The MAMSE weights minimizeP(\) and hence guarantee that = [1,0,...,0]T is a
suboptimal choice, which implies that

/ [F(z) - Fx(0)}?dBi(z) < / [{Fi(x) — Pa(2)}? + var {(Fa(2)}] dFi ()

P(X) < P(X) :/nilﬁl(z){l — Fi(x)}dFi(z) < ﬁ,

Therefore, as the sample size from Population 1 increasespiture of empirical distributions
F must become very close 0, which is known to converge uniformly and almost surely to
the target distributiorf;. Recall the heuristic development of Section 2: the MWLE nmazes
the proximity betweer¥ (x| §) and Fy.

Asymptotic properties oﬁA and of the MWLE are developed in Plante (2007). The proofs
require a detailed treatment since standard convergesscétsalo not apply to the MAMSE
weights. In all cases, the heuristic argument above inelsoathy the MAMSE weights have good
asymptotic properties, despite the fact that we do not asshenproximity of then populations.

8. CONCLUSION

The weighted likelihood is a method that allows one to ineloelevant information from avail-
able data even if they do not exactly follow the target disttion. The paradigm that we use
throughout this paper has been around for a few years nowthewbsence of an efficient and
reliable method for determining likelihood weights undtadly limited its popularity.

In this paper, we suggest a reliable nonparametric methodefi@rmining adaptive weights
and we provide an algorithm for calculating them. We thenasttoough simulations that the
MWLE using MAMSE weights often performs better than the MLEeSe good performances
hold in an example where the simulated models mimic distidbg based on real data.

Plante (2007) studies the asymptotic properties of the MEME&Ights as well as their ex-
tension to multivariate data and censored data. More waulddze done in these directions.

The original work of Hu (1994) is based on a paradigm inspligdsmoothing problems
where each datum may have a different weight. Revisiting plaradigm with the heuristic of
Section 2 and the idea of MAMSE weights could be fruitful,esplly if we try to link it to use-
ful applications. For instance, Hu & Rosenberg (2000) usd suweighted likelihood to make
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inferences about a process that reaches stability aftetarcaumber of iterations. Their work
is in the same spirit as Hu, Rosenberg & Zidek (2000) whereviighted likelihood is used to
make inferences about dependent data. To extend the MAMS$ghtseto such situations, we
could create subgroups of the data and see them as popslatinather approach could consist
in using parametric models to infer the cumulative distitoufunction in the MAMSE criterion
rather than their empirical counterparts. Such extensaoafiowever left to future work. Mean-
while, we hope that the MAMSE weights will contribute to pdgmizing the weighted likelihood
so that analysts may take advantage of its ability to boritoength with minimal assumptions.
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